Loading…
Rhomboid Protease AarA Mediates Quorum-Sensing in Providencia stuartii by Activating TatA of the Twin-Arginine Translocase
The Providencia stuartii AarA protein is a member of the rhomboid family of intramembrane serine proteases and is required for the production of an unknown quorum-sensing molecule. In a screen to identify rhomboid-encoding genes from Proteus mirabilis, tatA was identified as a multicopy suppressor a...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2007-01, Vol.104 (3), p.1003-1008 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c526t-c9bd4f07315917d80be0bc2ae0ac2c0cc719fbfb3ab0f37d59be0ef3571dd3a03 |
---|---|
cites | cdi_FETCH-LOGICAL-c526t-c9bd4f07315917d80be0bc2ae0ac2c0cc719fbfb3ab0f37d59be0ef3571dd3a03 |
container_end_page | 1008 |
container_issue | 3 |
container_start_page | 1003 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 104 |
creator | Stevenson, Lindsay G. Strisovsky, Kvido Clemmer, Katy M. Bhatt, Shantanu Freeman, Matthew Rather, Philip N. |
description | The Providencia stuartii AarA protein is a member of the rhomboid family of intramembrane serine proteases and is required for the production of an unknown quorum-sensing molecule. In a screen to identify rhomboid-encoding genes from Proteus mirabilis, tatA was identified as a multicopy suppressor and restored extracellular signal production as well as complementing all other phenotypes of a Prov. stuartii aarA mutant. TatA is a component of the twin-arginine translocase (Tat) protein secretion pathway and likely forms a secretion pore. By contrast, the native tatA gene of Prov. stuartii in multicopy did not suppress an aarA mutation. We find that TatA in Prov. stuartii has a short N-terminal extension that was atypical of TatA proteins from most other bacteria. This extension was proteolytically removed by AarA both in vivo and in vitro. A Prov. stuartii TatA protein missing the first 7 aa restored the ability to rescue the aarA-dependent phenotypes. To verify that loss of the Tat system was responsible for the various phenotypes exhibited by an aarA mutant, a tatC-null allele was constructed. The tatC mutant exhibited the same phenotypes as an aarA mutant and was epistatic to aarA. These data provide a molecular explanation for the requirement of AarA in quorum-sensing and uncover a function for the Tat protein export system in the production of secreted signaling molecules. Finally, TatA represents a validated natural substrate for a prokaryotic rhomboid protease. |
doi_str_mv | 10.1073/pnas.0608140104 |
format | article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_0608140104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25426223</jstor_id><sourcerecordid>25426223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-c9bd4f07315917d80be0bc2ae0ac2c0cc719fbfb3ab0f37d59be0ef3571dd3a03</originalsourceid><addsrcrecordid>eNqF0c1vFCEYB-CJ0di1evakIR70NO3Lx3xwMZk0apvU-LWeCcMwu2xmYAvMav3rZbKbbvWgFwjh4Qcvb5Y9x3CGoaLnWyvDGZRQYwYY2INsgYHjvGQcHmYLAFLlNSPsJHsSwgYAeFHD4-wEVwQXtKgW2a-vaze2znTos3dRy6BRI32DPurOyKgD-jI5P435N22DsStk7Ax3ptNWGYlCnKSPxqD2FjUqmp2Ms1rK2CDXo7jWaPnD2LzxK2ONTSsvbRicShc9zR71cgj62WE-zb6_f7e8uMyvP324umiuc1WQMuaKtx3rU7G44Ljqamg1tIpIDVIRBUpVmPdt31LZQk-rruAJ6D5Vh7uOSqCn2dt97nZqR90pbaOXg9h6M0p_K5w04s8da9Zi5XYCVzWlBUsBrw8B3t1MOkQxmqD0MEir3RREWXPMOeP_hZgXlNc1SfDVX3DjJm_TLwgCmHJesiqh8z1S3oXgdX_3ZAxi7r6Yuy-O3U8nXt6v9OgP7b4H5pPHOCZoGoEm8OafQPTTMET9Myb5Yi83ITp_R0nBSEkIpb8BvAHPJw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201399647</pqid></control><display><type>article</type><title>Rhomboid Protease AarA Mediates Quorum-Sensing in Providencia stuartii by Activating TatA of the Twin-Arginine Translocase</title><source>Open Access: PubMed Central</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Stevenson, Lindsay G. ; Strisovsky, Kvido ; Clemmer, Katy M. ; Bhatt, Shantanu ; Freeman, Matthew ; Rather, Philip N.</creator><creatorcontrib>Stevenson, Lindsay G. ; Strisovsky, Kvido ; Clemmer, Katy M. ; Bhatt, Shantanu ; Freeman, Matthew ; Rather, Philip N.</creatorcontrib><description>The Providencia stuartii AarA protein is a member of the rhomboid family of intramembrane serine proteases and is required for the production of an unknown quorum-sensing molecule. In a screen to identify rhomboid-encoding genes from Proteus mirabilis, tatA was identified as a multicopy suppressor and restored extracellular signal production as well as complementing all other phenotypes of a Prov. stuartii aarA mutant. TatA is a component of the twin-arginine translocase (Tat) protein secretion pathway and likely forms a secretion pore. By contrast, the native tatA gene of Prov. stuartii in multicopy did not suppress an aarA mutation. We find that TatA in Prov. stuartii has a short N-terminal extension that was atypical of TatA proteins from most other bacteria. This extension was proteolytically removed by AarA both in vivo and in vitro. A Prov. stuartii TatA protein missing the first 7 aa restored the ability to rescue the aarA-dependent phenotypes. To verify that loss of the Tat system was responsible for the various phenotypes exhibited by an aarA mutant, a tatC-null allele was constructed. The tatC mutant exhibited the same phenotypes as an aarA mutant and was epistatic to aarA. These data provide a molecular explanation for the requirement of AarA in quorum-sensing and uncover a function for the Tat protein export system in the production of secreted signaling molecules. Finally, TatA represents a validated natural substrate for a prokaryotic rhomboid protease.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0608140104</identifier><identifier>PMID: 17215357</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino Acid Sequence ; Amino acids ; Amino Acids - genetics ; Amino Acids - metabolism ; Bacterial proteins ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - isolation & purification ; Bacterial Proteins - metabolism ; Biological Sciences ; Biological Transport ; Cell growth ; Enzyme Activation ; Enzymes ; Gene Dosage ; Gene Expression ; Genetic mutation ; Genotype & phenotype ; Membrane Transport Proteins - genetics ; Membrane Transport Proteins - metabolism ; Molecular biology ; Molecular Sequence Data ; Molecules ; Mutation ; Mutation - genetics ; Operon - genetics ; Operons ; Phenotype ; Phenotypes ; Pigments ; Plasmids ; Proteins ; Proteus mirabilis ; Providencia - enzymology ; Providencia - genetics ; Providencia stuartii ; Quorum Sensing ; Repressor Proteins - chemistry ; Repressor Proteins - genetics ; Repressor Proteins - isolation & purification ; Repressor Proteins - metabolism ; Sequence Alignment ; Signal Transduction</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2007-01, Vol.104 (3), p.1003-1008</ispartof><rights>Copyright 2007 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jan 16, 2007</rights><rights>2007 by The National Academy of Sciences of the USA 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-c9bd4f07315917d80be0bc2ae0ac2c0cc719fbfb3ab0f37d59be0ef3571dd3a03</citedby><cites>FETCH-LOGICAL-c526t-c9bd4f07315917d80be0bc2ae0ac2c0cc719fbfb3ab0f37d59be0ef3571dd3a03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/104/3.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25426223$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25426223$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17215357$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stevenson, Lindsay G.</creatorcontrib><creatorcontrib>Strisovsky, Kvido</creatorcontrib><creatorcontrib>Clemmer, Katy M.</creatorcontrib><creatorcontrib>Bhatt, Shantanu</creatorcontrib><creatorcontrib>Freeman, Matthew</creatorcontrib><creatorcontrib>Rather, Philip N.</creatorcontrib><title>Rhomboid Protease AarA Mediates Quorum-Sensing in Providencia stuartii by Activating TatA of the Twin-Arginine Translocase</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The Providencia stuartii AarA protein is a member of the rhomboid family of intramembrane serine proteases and is required for the production of an unknown quorum-sensing molecule. In a screen to identify rhomboid-encoding genes from Proteus mirabilis, tatA was identified as a multicopy suppressor and restored extracellular signal production as well as complementing all other phenotypes of a Prov. stuartii aarA mutant. TatA is a component of the twin-arginine translocase (Tat) protein secretion pathway and likely forms a secretion pore. By contrast, the native tatA gene of Prov. stuartii in multicopy did not suppress an aarA mutation. We find that TatA in Prov. stuartii has a short N-terminal extension that was atypical of TatA proteins from most other bacteria. This extension was proteolytically removed by AarA both in vivo and in vitro. A Prov. stuartii TatA protein missing the first 7 aa restored the ability to rescue the aarA-dependent phenotypes. To verify that loss of the Tat system was responsible for the various phenotypes exhibited by an aarA mutant, a tatC-null allele was constructed. The tatC mutant exhibited the same phenotypes as an aarA mutant and was epistatic to aarA. These data provide a molecular explanation for the requirement of AarA in quorum-sensing and uncover a function for the Tat protein export system in the production of secreted signaling molecules. Finally, TatA represents a validated natural substrate for a prokaryotic rhomboid protease.</description><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Amino Acids - genetics</subject><subject>Amino Acids - metabolism</subject><subject>Bacterial proteins</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - isolation & purification</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biological Sciences</subject><subject>Biological Transport</subject><subject>Cell growth</subject><subject>Enzyme Activation</subject><subject>Enzymes</subject><subject>Gene Dosage</subject><subject>Gene Expression</subject><subject>Genetic mutation</subject><subject>Genotype & phenotype</subject><subject>Membrane Transport Proteins - genetics</subject><subject>Membrane Transport Proteins - metabolism</subject><subject>Molecular biology</subject><subject>Molecular Sequence Data</subject><subject>Molecules</subject><subject>Mutation</subject><subject>Mutation - genetics</subject><subject>Operon - genetics</subject><subject>Operons</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Pigments</subject><subject>Plasmids</subject><subject>Proteins</subject><subject>Proteus mirabilis</subject><subject>Providencia - enzymology</subject><subject>Providencia - genetics</subject><subject>Providencia stuartii</subject><subject>Quorum Sensing</subject><subject>Repressor Proteins - chemistry</subject><subject>Repressor Proteins - genetics</subject><subject>Repressor Proteins - isolation & purification</subject><subject>Repressor Proteins - metabolism</subject><subject>Sequence Alignment</subject><subject>Signal Transduction</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqF0c1vFCEYB-CJ0di1evakIR70NO3Lx3xwMZk0apvU-LWeCcMwu2xmYAvMav3rZbKbbvWgFwjh4Qcvb5Y9x3CGoaLnWyvDGZRQYwYY2INsgYHjvGQcHmYLAFLlNSPsJHsSwgYAeFHD4-wEVwQXtKgW2a-vaze2znTos3dRy6BRI32DPurOyKgD-jI5P435N22DsStk7Ax3ptNWGYlCnKSPxqD2FjUqmp2Ms1rK2CDXo7jWaPnD2LzxK2ONTSsvbRicShc9zR71cgj62WE-zb6_f7e8uMyvP324umiuc1WQMuaKtx3rU7G44Ljqamg1tIpIDVIRBUpVmPdt31LZQk-rruAJ6D5Vh7uOSqCn2dt97nZqR90pbaOXg9h6M0p_K5w04s8da9Zi5XYCVzWlBUsBrw8B3t1MOkQxmqD0MEir3RREWXPMOeP_hZgXlNc1SfDVX3DjJm_TLwgCmHJesiqh8z1S3oXgdX_3ZAxi7r6Yuy-O3U8nXt6v9OgP7b4H5pPHOCZoGoEm8OafQPTTMET9Myb5Yi83ITp_R0nBSEkIpb8BvAHPJw</recordid><startdate>20070116</startdate><enddate>20070116</enddate><creator>Stevenson, Lindsay G.</creator><creator>Strisovsky, Kvido</creator><creator>Clemmer, Katy M.</creator><creator>Bhatt, Shantanu</creator><creator>Freeman, Matthew</creator><creator>Rather, Philip N.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20070116</creationdate><title>Rhomboid Protease AarA Mediates Quorum-Sensing in Providencia stuartii by Activating TatA of the Twin-Arginine Translocase</title><author>Stevenson, Lindsay G. ; Strisovsky, Kvido ; Clemmer, Katy M. ; Bhatt, Shantanu ; Freeman, Matthew ; Rather, Philip N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-c9bd4f07315917d80be0bc2ae0ac2c0cc719fbfb3ab0f37d59be0ef3571dd3a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Amino Acids - genetics</topic><topic>Amino Acids - metabolism</topic><topic>Bacterial proteins</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - isolation & purification</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biological Sciences</topic><topic>Biological Transport</topic><topic>Cell growth</topic><topic>Enzyme Activation</topic><topic>Enzymes</topic><topic>Gene Dosage</topic><topic>Gene Expression</topic><topic>Genetic mutation</topic><topic>Genotype & phenotype</topic><topic>Membrane Transport Proteins - genetics</topic><topic>Membrane Transport Proteins - metabolism</topic><topic>Molecular biology</topic><topic>Molecular Sequence Data</topic><topic>Molecules</topic><topic>Mutation</topic><topic>Mutation - genetics</topic><topic>Operon - genetics</topic><topic>Operons</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Pigments</topic><topic>Plasmids</topic><topic>Proteins</topic><topic>Proteus mirabilis</topic><topic>Providencia - enzymology</topic><topic>Providencia - genetics</topic><topic>Providencia stuartii</topic><topic>Quorum Sensing</topic><topic>Repressor Proteins - chemistry</topic><topic>Repressor Proteins - genetics</topic><topic>Repressor Proteins - isolation & purification</topic><topic>Repressor Proteins - metabolism</topic><topic>Sequence Alignment</topic><topic>Signal Transduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stevenson, Lindsay G.</creatorcontrib><creatorcontrib>Strisovsky, Kvido</creatorcontrib><creatorcontrib>Clemmer, Katy M.</creatorcontrib><creatorcontrib>Bhatt, Shantanu</creatorcontrib><creatorcontrib>Freeman, Matthew</creatorcontrib><creatorcontrib>Rather, Philip N.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stevenson, Lindsay G.</au><au>Strisovsky, Kvido</au><au>Clemmer, Katy M.</au><au>Bhatt, Shantanu</au><au>Freeman, Matthew</au><au>Rather, Philip N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rhomboid Protease AarA Mediates Quorum-Sensing in Providencia stuartii by Activating TatA of the Twin-Arginine Translocase</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2007-01-16</date><risdate>2007</risdate><volume>104</volume><issue>3</issue><spage>1003</spage><epage>1008</epage><pages>1003-1008</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The Providencia stuartii AarA protein is a member of the rhomboid family of intramembrane serine proteases and is required for the production of an unknown quorum-sensing molecule. In a screen to identify rhomboid-encoding genes from Proteus mirabilis, tatA was identified as a multicopy suppressor and restored extracellular signal production as well as complementing all other phenotypes of a Prov. stuartii aarA mutant. TatA is a component of the twin-arginine translocase (Tat) protein secretion pathway and likely forms a secretion pore. By contrast, the native tatA gene of Prov. stuartii in multicopy did not suppress an aarA mutation. We find that TatA in Prov. stuartii has a short N-terminal extension that was atypical of TatA proteins from most other bacteria. This extension was proteolytically removed by AarA both in vivo and in vitro. A Prov. stuartii TatA protein missing the first 7 aa restored the ability to rescue the aarA-dependent phenotypes. To verify that loss of the Tat system was responsible for the various phenotypes exhibited by an aarA mutant, a tatC-null allele was constructed. The tatC mutant exhibited the same phenotypes as an aarA mutant and was epistatic to aarA. These data provide a molecular explanation for the requirement of AarA in quorum-sensing and uncover a function for the Tat protein export system in the production of secreted signaling molecules. Finally, TatA represents a validated natural substrate for a prokaryotic rhomboid protease.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>17215357</pmid><doi>10.1073/pnas.0608140104</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2007-01, Vol.104 (3), p.1003-1008 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_crossref_primary_10_1073_pnas_0608140104 |
source | Open Access: PubMed Central; JSTOR Archival Journals and Primary Sources Collection |
subjects | Amino Acid Sequence Amino acids Amino Acids - genetics Amino Acids - metabolism Bacterial proteins Bacterial Proteins - chemistry Bacterial Proteins - genetics Bacterial Proteins - isolation & purification Bacterial Proteins - metabolism Biological Sciences Biological Transport Cell growth Enzyme Activation Enzymes Gene Dosage Gene Expression Genetic mutation Genotype & phenotype Membrane Transport Proteins - genetics Membrane Transport Proteins - metabolism Molecular biology Molecular Sequence Data Molecules Mutation Mutation - genetics Operon - genetics Operons Phenotype Phenotypes Pigments Plasmids Proteins Proteus mirabilis Providencia - enzymology Providencia - genetics Providencia stuartii Quorum Sensing Repressor Proteins - chemistry Repressor Proteins - genetics Repressor Proteins - isolation & purification Repressor Proteins - metabolism Sequence Alignment Signal Transduction |
title | Rhomboid Protease AarA Mediates Quorum-Sensing in Providencia stuartii by Activating TatA of the Twin-Arginine Translocase |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A24%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rhomboid%20Protease%20AarA%20Mediates%20Quorum-Sensing%20in%20Providencia%20stuartii%20by%20Activating%20TatA%20of%20the%20Twin-Arginine%20Translocase&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Stevenson,%20Lindsay%20G.&rft.date=2007-01-16&rft.volume=104&rft.issue=3&rft.spage=1003&rft.epage=1008&rft.pages=1003-1008&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0608140104&rft_dat=%3Cjstor_cross%3E25426223%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c526t-c9bd4f07315917d80be0bc2ae0ac2c0cc719fbfb3ab0f37d59be0ef3571dd3a03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201399647&rft_id=info:pmid/17215357&rft_jstor_id=25426223&rfr_iscdi=true |