Loading…
Comparison of successive transition states for folding reveals alternative early folding pathways of two homologous proteins
The energy landscape theory provides a general framework for describing protein folding reactions. Because a large number of studies, however, have focused on two-state proteins with single well-defined folding pathways and without detectable intermediates, the extent to which free energy landscapes...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2008-12, Vol.105 (49), p.19241-19246 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c656t-a2a2be5dbb3f5adb1f76e03a09e24496c123af504ca557b433fc7437dfe3b4c43 |
---|---|
cites | cdi_FETCH-LOGICAL-c656t-a2a2be5dbb3f5adb1f76e03a09e24496c123af504ca557b433fc7437dfe3b4c43 |
container_end_page | 19246 |
container_issue | 49 |
container_start_page | 19241 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 105 |
creator | Calosci, Nicoletta Chi, Celestine N Richter, Barbara Camilloni, Carlo Engström, Åke Eklund, Lars Travaglini-Allocatelli, Carlo Gianni, Stefano Vendruscolo, Michele Jemth, Per |
description | The energy landscape theory provides a general framework for describing protein folding reactions. Because a large number of studies, however, have focused on two-state proteins with single well-defined folding pathways and without detectable intermediates, the extent to which free energy landscapes are shaped up by the native topology at the early stages of the folding process has not been fully characterized experimentally. To this end, we have investigated the folding mechanisms of two homologous three-state proteins, PTP-BL PDZ2 and PSD-95 PDZ3, and compared the early and late transition states on their folding pathways. Through a combination of Φ value analysis and molecular dynamics simulations we obtained atomic-level structures of the transition states of these homologous three-state proteins and found that the late transition states are much more structurally similar than the early ones. Our findings thus reveal that, while the native state topology defines essentially in a unique way the late stages of folding, it leaves significant freedom to the early events, a result that reflects the funneling of the free energy landscape toward the native state. |
doi_str_mv | 10.1073/pnas.0804774105 |
format | article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_0804774105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25465629</jstor_id><sourcerecordid>25465629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c656t-a2a2be5dbb3f5adb1f76e03a09e24496c123af504ca557b433fc7437dfe3b4c43</originalsourceid><addsrcrecordid>eNqFks2LEzEYxgdR3HX17EkdPAgi3X3zNWkuwlI_YcGDrteQmSZtynQym2RaC_7xvkNL63rxEHJ4fu_D-_EUxXMClwQku-o7ky5hClxKTkA8KM4JKDKpuIKHxTkAlZMpp_yseJLSCgCUmMLj4owoYIxLOC9-z8K6N9Gn0JXBlWloGpuS39gyR9Mlnz0KKZtsU-lCxNfOfbcoo91Y06bStNnGzuSxwprY7o5Eb_Jya3ZptM3bUC7DOrRhEYZU9jFk67v0tHjk0MQ-O_wXxe2njz9mXyY33z5_nV3fTJpKVHliqKG1FfO6Zk6YeU2crCwwA8pSzlXVEMqME8AbI4SsOWOukZzJubOs5g1nF8W7vW_a2n6odR_92sSdDsbrD_7ntQ5xoYdBqymREun3exrRtZ03tsNVtPeK7iudX-pF2GhaES55hQZvDgYx3A02Zb32qbFtazqL42sKFLfPAcHX_4CrMOA225EhTHHBKEJXe6iJIaVo3bETAnoMgR5DoE8hwIqXfw9w4g9XR6A8AGPlyU5orpCinCDy9j-IdkOLx_-VkX2xZ1cph3iEqeB4PqpQf7XXnQnaLDBs-vb7OCAQUSmBDf0Bl3fd6A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201394532</pqid></control><display><type>article</type><title>Comparison of successive transition states for folding reveals alternative early folding pathways of two homologous proteins</title><source>PubMed Central Free</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Calosci, Nicoletta ; Chi, Celestine N ; Richter, Barbara ; Camilloni, Carlo ; Engström, Åke ; Eklund, Lars ; Travaglini-Allocatelli, Carlo ; Gianni, Stefano ; Vendruscolo, Michele ; Jemth, Per</creator><creatorcontrib>Calosci, Nicoletta ; Chi, Celestine N ; Richter, Barbara ; Camilloni, Carlo ; Engström, Åke ; Eklund, Lars ; Travaglini-Allocatelli, Carlo ; Gianni, Stefano ; Vendruscolo, Michele ; Jemth, Per</creatorcontrib><description>The energy landscape theory provides a general framework for describing protein folding reactions. Because a large number of studies, however, have focused on two-state proteins with single well-defined folding pathways and without detectable intermediates, the extent to which free energy landscapes are shaped up by the native topology at the early stages of the folding process has not been fully characterized experimentally. To this end, we have investigated the folding mechanisms of two homologous three-state proteins, PTP-BL PDZ2 and PSD-95 PDZ3, and compared the early and late transition states on their folding pathways. Through a combination of Φ value analysis and molecular dynamics simulations we obtained atomic-level structures of the transition states of these homologous three-state proteins and found that the late transition states are much more structurally similar than the early ones. Our findings thus reveal that, while the native state topology defines essentially in a unique way the late stages of folding, it leaves significant freedom to the early events, a result that reflects the funneling of the free energy landscape toward the native state.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0804774105</identifier><identifier>PMID: 19033470</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biochemical mechanisms ; Biochemistry ; Biological Sciences ; Chemical reactions ; Computer Simulation ; energy landscape ; Energy value ; Free energy ; Kinetics ; MEDICIN ; MEDICINE ; Models, Chemical ; Molecular dynamics ; Molecules ; Mutagenesis ; Nerve Tissue Proteins - chemistry ; Nerve Tissue Proteins - genetics ; PDZ Domains ; phi analysis ; Protein Folding ; Protein Tyrosine Phosphatase, Non-Receptor Type 13 - chemistry ; Protein Tyrosine Phosphatase, Non-Receptor Type 13 - genetics ; Simulation ; Thermodynamics ; Topology ; Trajectories ; Value analysis</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2008-12, Vol.105 (49), p.19241-19246</ispartof><rights>Copyright 2008 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Dec 9, 2008</rights><rights>2008 by The National Academy of Sciences of the USA</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c656t-a2a2be5dbb3f5adb1f76e03a09e24496c123af504ca557b433fc7437dfe3b4c43</citedby><cites>FETCH-LOGICAL-c656t-a2a2be5dbb3f5adb1f76e03a09e24496c123af504ca557b433fc7437dfe3b4c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/105/49.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25465629$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25465629$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19033470$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-98177$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Calosci, Nicoletta</creatorcontrib><creatorcontrib>Chi, Celestine N</creatorcontrib><creatorcontrib>Richter, Barbara</creatorcontrib><creatorcontrib>Camilloni, Carlo</creatorcontrib><creatorcontrib>Engström, Åke</creatorcontrib><creatorcontrib>Eklund, Lars</creatorcontrib><creatorcontrib>Travaglini-Allocatelli, Carlo</creatorcontrib><creatorcontrib>Gianni, Stefano</creatorcontrib><creatorcontrib>Vendruscolo, Michele</creatorcontrib><creatorcontrib>Jemth, Per</creatorcontrib><title>Comparison of successive transition states for folding reveals alternative early folding pathways of two homologous proteins</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The energy landscape theory provides a general framework for describing protein folding reactions. Because a large number of studies, however, have focused on two-state proteins with single well-defined folding pathways and without detectable intermediates, the extent to which free energy landscapes are shaped up by the native topology at the early stages of the folding process has not been fully characterized experimentally. To this end, we have investigated the folding mechanisms of two homologous three-state proteins, PTP-BL PDZ2 and PSD-95 PDZ3, and compared the early and late transition states on their folding pathways. Through a combination of Φ value analysis and molecular dynamics simulations we obtained atomic-level structures of the transition states of these homologous three-state proteins and found that the late transition states are much more structurally similar than the early ones. Our findings thus reveal that, while the native state topology defines essentially in a unique way the late stages of folding, it leaves significant freedom to the early events, a result that reflects the funneling of the free energy landscape toward the native state.</description><subject>Biochemical mechanisms</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Chemical reactions</subject><subject>Computer Simulation</subject><subject>energy landscape</subject><subject>Energy value</subject><subject>Free energy</subject><subject>Kinetics</subject><subject>MEDICIN</subject><subject>MEDICINE</subject><subject>Models, Chemical</subject><subject>Molecular dynamics</subject><subject>Molecules</subject><subject>Mutagenesis</subject><subject>Nerve Tissue Proteins - chemistry</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>PDZ Domains</subject><subject>phi analysis</subject><subject>Protein Folding</subject><subject>Protein Tyrosine Phosphatase, Non-Receptor Type 13 - chemistry</subject><subject>Protein Tyrosine Phosphatase, Non-Receptor Type 13 - genetics</subject><subject>Simulation</subject><subject>Thermodynamics</subject><subject>Topology</subject><subject>Trajectories</subject><subject>Value analysis</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFks2LEzEYxgdR3HX17EkdPAgi3X3zNWkuwlI_YcGDrteQmSZtynQym2RaC_7xvkNL63rxEHJ4fu_D-_EUxXMClwQku-o7ky5hClxKTkA8KM4JKDKpuIKHxTkAlZMpp_yseJLSCgCUmMLj4owoYIxLOC9-z8K6N9Gn0JXBlWloGpuS39gyR9Mlnz0KKZtsU-lCxNfOfbcoo91Y06bStNnGzuSxwprY7o5Eb_Jya3ZptM3bUC7DOrRhEYZU9jFk67v0tHjk0MQ-O_wXxe2njz9mXyY33z5_nV3fTJpKVHliqKG1FfO6Zk6YeU2crCwwA8pSzlXVEMqME8AbI4SsOWOukZzJubOs5g1nF8W7vW_a2n6odR_92sSdDsbrD_7ntQ5xoYdBqymREun3exrRtZ03tsNVtPeK7iudX-pF2GhaES55hQZvDgYx3A02Zb32qbFtazqL42sKFLfPAcHX_4CrMOA225EhTHHBKEJXe6iJIaVo3bETAnoMgR5DoE8hwIqXfw9w4g9XR6A8AGPlyU5orpCinCDy9j-IdkOLx_-VkX2xZ1cph3iEqeB4PqpQf7XXnQnaLDBs-vb7OCAQUSmBDf0Bl3fd6A</recordid><startdate>20081209</startdate><enddate>20081209</enddate><creator>Calosci, Nicoletta</creator><creator>Chi, Celestine N</creator><creator>Richter, Barbara</creator><creator>Camilloni, Carlo</creator><creator>Engström, Åke</creator><creator>Eklund, Lars</creator><creator>Travaglini-Allocatelli, Carlo</creator><creator>Gianni, Stefano</creator><creator>Vendruscolo, Michele</creator><creator>Jemth, Per</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7ST</scope><scope>7U6</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DF2</scope></search><sort><creationdate>20081209</creationdate><title>Comparison of successive transition states for folding reveals alternative early folding pathways of two homologous proteins</title><author>Calosci, Nicoletta ; Chi, Celestine N ; Richter, Barbara ; Camilloni, Carlo ; Engström, Åke ; Eklund, Lars ; Travaglini-Allocatelli, Carlo ; Gianni, Stefano ; Vendruscolo, Michele ; Jemth, Per</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c656t-a2a2be5dbb3f5adb1f76e03a09e24496c123af504ca557b433fc7437dfe3b4c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Biochemical mechanisms</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Chemical reactions</topic><topic>Computer Simulation</topic><topic>energy landscape</topic><topic>Energy value</topic><topic>Free energy</topic><topic>Kinetics</topic><topic>MEDICIN</topic><topic>MEDICINE</topic><topic>Models, Chemical</topic><topic>Molecular dynamics</topic><topic>Molecules</topic><topic>Mutagenesis</topic><topic>Nerve Tissue Proteins - chemistry</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>PDZ Domains</topic><topic>phi analysis</topic><topic>Protein Folding</topic><topic>Protein Tyrosine Phosphatase, Non-Receptor Type 13 - chemistry</topic><topic>Protein Tyrosine Phosphatase, Non-Receptor Type 13 - genetics</topic><topic>Simulation</topic><topic>Thermodynamics</topic><topic>Topology</topic><topic>Trajectories</topic><topic>Value analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calosci, Nicoletta</creatorcontrib><creatorcontrib>Chi, Celestine N</creatorcontrib><creatorcontrib>Richter, Barbara</creatorcontrib><creatorcontrib>Camilloni, Carlo</creatorcontrib><creatorcontrib>Engström, Åke</creatorcontrib><creatorcontrib>Eklund, Lars</creatorcontrib><creatorcontrib>Travaglini-Allocatelli, Carlo</creatorcontrib><creatorcontrib>Gianni, Stefano</creatorcontrib><creatorcontrib>Vendruscolo, Michele</creatorcontrib><creatorcontrib>Jemth, Per</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Uppsala universitet</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calosci, Nicoletta</au><au>Chi, Celestine N</au><au>Richter, Barbara</au><au>Camilloni, Carlo</au><au>Engström, Åke</au><au>Eklund, Lars</au><au>Travaglini-Allocatelli, Carlo</au><au>Gianni, Stefano</au><au>Vendruscolo, Michele</au><au>Jemth, Per</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of successive transition states for folding reveals alternative early folding pathways of two homologous proteins</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2008-12-09</date><risdate>2008</risdate><volume>105</volume><issue>49</issue><spage>19241</spage><epage>19246</epage><pages>19241-19246</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>The energy landscape theory provides a general framework for describing protein folding reactions. Because a large number of studies, however, have focused on two-state proteins with single well-defined folding pathways and without detectable intermediates, the extent to which free energy landscapes are shaped up by the native topology at the early stages of the folding process has not been fully characterized experimentally. To this end, we have investigated the folding mechanisms of two homologous three-state proteins, PTP-BL PDZ2 and PSD-95 PDZ3, and compared the early and late transition states on their folding pathways. Through a combination of Φ value analysis and molecular dynamics simulations we obtained atomic-level structures of the transition states of these homologous three-state proteins and found that the late transition states are much more structurally similar than the early ones. Our findings thus reveal that, while the native state topology defines essentially in a unique way the late stages of folding, it leaves significant freedom to the early events, a result that reflects the funneling of the free energy landscape toward the native state.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>19033470</pmid><doi>10.1073/pnas.0804774105</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2008-12, Vol.105 (49), p.19241-19246 |
issn | 0027-8424 1091-6490 1091-6490 |
language | eng |
recordid | cdi_crossref_primary_10_1073_pnas_0804774105 |
source | PubMed Central Free; JSTOR Archival Journals and Primary Sources Collection |
subjects | Biochemical mechanisms Biochemistry Biological Sciences Chemical reactions Computer Simulation energy landscape Energy value Free energy Kinetics MEDICIN MEDICINE Models, Chemical Molecular dynamics Molecules Mutagenesis Nerve Tissue Proteins - chemistry Nerve Tissue Proteins - genetics PDZ Domains phi analysis Protein Folding Protein Tyrosine Phosphatase, Non-Receptor Type 13 - chemistry Protein Tyrosine Phosphatase, Non-Receptor Type 13 - genetics Simulation Thermodynamics Topology Trajectories Value analysis |
title | Comparison of successive transition states for folding reveals alternative early folding pathways of two homologous proteins |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T11%3A20%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20successive%20transition%20states%20for%20folding%20reveals%20alternative%20early%20folding%20pathways%20of%20two%20homologous%20proteins&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Calosci,%20Nicoletta&rft.date=2008-12-09&rft.volume=105&rft.issue=49&rft.spage=19241&rft.epage=19246&rft.pages=19241-19246&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0804774105&rft_dat=%3Cjstor_cross%3E25465629%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c656t-a2a2be5dbb3f5adb1f76e03a09e24496c123af504ca557b433fc7437dfe3b4c43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201394532&rft_id=info:pmid/19033470&rft_jstor_id=25465629&rfr_iscdi=true |