Loading…

Comparison of successive transition states for folding reveals alternative early folding pathways of two homologous proteins

The energy landscape theory provides a general framework for describing protein folding reactions. Because a large number of studies, however, have focused on two-state proteins with single well-defined folding pathways and without detectable intermediates, the extent to which free energy landscapes...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2008-12, Vol.105 (49), p.19241-19246
Main Authors: Calosci, Nicoletta, Chi, Celestine N, Richter, Barbara, Camilloni, Carlo, Engström, Åke, Eklund, Lars, Travaglini-Allocatelli, Carlo, Gianni, Stefano, Vendruscolo, Michele, Jemth, Per
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c656t-a2a2be5dbb3f5adb1f76e03a09e24496c123af504ca557b433fc7437dfe3b4c43
cites cdi_FETCH-LOGICAL-c656t-a2a2be5dbb3f5adb1f76e03a09e24496c123af504ca557b433fc7437dfe3b4c43
container_end_page 19246
container_issue 49
container_start_page 19241
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 105
creator Calosci, Nicoletta
Chi, Celestine N
Richter, Barbara
Camilloni, Carlo
Engström, Åke
Eklund, Lars
Travaglini-Allocatelli, Carlo
Gianni, Stefano
Vendruscolo, Michele
Jemth, Per
description The energy landscape theory provides a general framework for describing protein folding reactions. Because a large number of studies, however, have focused on two-state proteins with single well-defined folding pathways and without detectable intermediates, the extent to which free energy landscapes are shaped up by the native topology at the early stages of the folding process has not been fully characterized experimentally. To this end, we have investigated the folding mechanisms of two homologous three-state proteins, PTP-BL PDZ2 and PSD-95 PDZ3, and compared the early and late transition states on their folding pathways. Through a combination of Φ value analysis and molecular dynamics simulations we obtained atomic-level structures of the transition states of these homologous three-state proteins and found that the late transition states are much more structurally similar than the early ones. Our findings thus reveal that, while the native state topology defines essentially in a unique way the late stages of folding, it leaves significant freedom to the early events, a result that reflects the funneling of the free energy landscape toward the native state.
doi_str_mv 10.1073/pnas.0804774105
format article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_0804774105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25465629</jstor_id><sourcerecordid>25465629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c656t-a2a2be5dbb3f5adb1f76e03a09e24496c123af504ca557b433fc7437dfe3b4c43</originalsourceid><addsrcrecordid>eNqFks2LEzEYxgdR3HX17EkdPAgi3X3zNWkuwlI_YcGDrteQmSZtynQym2RaC_7xvkNL63rxEHJ4fu_D-_EUxXMClwQku-o7ky5hClxKTkA8KM4JKDKpuIKHxTkAlZMpp_yseJLSCgCUmMLj4owoYIxLOC9-z8K6N9Gn0JXBlWloGpuS39gyR9Mlnz0KKZtsU-lCxNfOfbcoo91Y06bStNnGzuSxwprY7o5Eb_Jya3ZptM3bUC7DOrRhEYZU9jFk67v0tHjk0MQ-O_wXxe2njz9mXyY33z5_nV3fTJpKVHliqKG1FfO6Zk6YeU2crCwwA8pSzlXVEMqME8AbI4SsOWOukZzJubOs5g1nF8W7vW_a2n6odR_92sSdDsbrD_7ntQ5xoYdBqymREun3exrRtZ03tsNVtPeK7iudX-pF2GhaES55hQZvDgYx3A02Zb32qbFtazqL42sKFLfPAcHX_4CrMOA225EhTHHBKEJXe6iJIaVo3bETAnoMgR5DoE8hwIqXfw9w4g9XR6A8AGPlyU5orpCinCDy9j-IdkOLx_-VkX2xZ1cph3iEqeB4PqpQf7XXnQnaLDBs-vb7OCAQUSmBDf0Bl3fd6A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201394532</pqid></control><display><type>article</type><title>Comparison of successive transition states for folding reveals alternative early folding pathways of two homologous proteins</title><source>PubMed Central Free</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Calosci, Nicoletta ; Chi, Celestine N ; Richter, Barbara ; Camilloni, Carlo ; Engström, Åke ; Eklund, Lars ; Travaglini-Allocatelli, Carlo ; Gianni, Stefano ; Vendruscolo, Michele ; Jemth, Per</creator><creatorcontrib>Calosci, Nicoletta ; Chi, Celestine N ; Richter, Barbara ; Camilloni, Carlo ; Engström, Åke ; Eklund, Lars ; Travaglini-Allocatelli, Carlo ; Gianni, Stefano ; Vendruscolo, Michele ; Jemth, Per</creatorcontrib><description>The energy landscape theory provides a general framework for describing protein folding reactions. Because a large number of studies, however, have focused on two-state proteins with single well-defined folding pathways and without detectable intermediates, the extent to which free energy landscapes are shaped up by the native topology at the early stages of the folding process has not been fully characterized experimentally. To this end, we have investigated the folding mechanisms of two homologous three-state proteins, PTP-BL PDZ2 and PSD-95 PDZ3, and compared the early and late transition states on their folding pathways. Through a combination of Φ value analysis and molecular dynamics simulations we obtained atomic-level structures of the transition states of these homologous three-state proteins and found that the late transition states are much more structurally similar than the early ones. Our findings thus reveal that, while the native state topology defines essentially in a unique way the late stages of folding, it leaves significant freedom to the early events, a result that reflects the funneling of the free energy landscape toward the native state.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0804774105</identifier><identifier>PMID: 19033470</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biochemical mechanisms ; Biochemistry ; Biological Sciences ; Chemical reactions ; Computer Simulation ; energy landscape ; Energy value ; Free energy ; Kinetics ; MEDICIN ; MEDICINE ; Models, Chemical ; Molecular dynamics ; Molecules ; Mutagenesis ; Nerve Tissue Proteins - chemistry ; Nerve Tissue Proteins - genetics ; PDZ Domains ; phi analysis ; Protein Folding ; Protein Tyrosine Phosphatase, Non-Receptor Type 13 - chemistry ; Protein Tyrosine Phosphatase, Non-Receptor Type 13 - genetics ; Simulation ; Thermodynamics ; Topology ; Trajectories ; Value analysis</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2008-12, Vol.105 (49), p.19241-19246</ispartof><rights>Copyright 2008 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Dec 9, 2008</rights><rights>2008 by The National Academy of Sciences of the USA</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c656t-a2a2be5dbb3f5adb1f76e03a09e24496c123af504ca557b433fc7437dfe3b4c43</citedby><cites>FETCH-LOGICAL-c656t-a2a2be5dbb3f5adb1f76e03a09e24496c123af504ca557b433fc7437dfe3b4c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/105/49.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25465629$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25465629$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19033470$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-98177$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Calosci, Nicoletta</creatorcontrib><creatorcontrib>Chi, Celestine N</creatorcontrib><creatorcontrib>Richter, Barbara</creatorcontrib><creatorcontrib>Camilloni, Carlo</creatorcontrib><creatorcontrib>Engström, Åke</creatorcontrib><creatorcontrib>Eklund, Lars</creatorcontrib><creatorcontrib>Travaglini-Allocatelli, Carlo</creatorcontrib><creatorcontrib>Gianni, Stefano</creatorcontrib><creatorcontrib>Vendruscolo, Michele</creatorcontrib><creatorcontrib>Jemth, Per</creatorcontrib><title>Comparison of successive transition states for folding reveals alternative early folding pathways of two homologous proteins</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The energy landscape theory provides a general framework for describing protein folding reactions. Because a large number of studies, however, have focused on two-state proteins with single well-defined folding pathways and without detectable intermediates, the extent to which free energy landscapes are shaped up by the native topology at the early stages of the folding process has not been fully characterized experimentally. To this end, we have investigated the folding mechanisms of two homologous three-state proteins, PTP-BL PDZ2 and PSD-95 PDZ3, and compared the early and late transition states on their folding pathways. Through a combination of Φ value analysis and molecular dynamics simulations we obtained atomic-level structures of the transition states of these homologous three-state proteins and found that the late transition states are much more structurally similar than the early ones. Our findings thus reveal that, while the native state topology defines essentially in a unique way the late stages of folding, it leaves significant freedom to the early events, a result that reflects the funneling of the free energy landscape toward the native state.</description><subject>Biochemical mechanisms</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Chemical reactions</subject><subject>Computer Simulation</subject><subject>energy landscape</subject><subject>Energy value</subject><subject>Free energy</subject><subject>Kinetics</subject><subject>MEDICIN</subject><subject>MEDICINE</subject><subject>Models, Chemical</subject><subject>Molecular dynamics</subject><subject>Molecules</subject><subject>Mutagenesis</subject><subject>Nerve Tissue Proteins - chemistry</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>PDZ Domains</subject><subject>phi analysis</subject><subject>Protein Folding</subject><subject>Protein Tyrosine Phosphatase, Non-Receptor Type 13 - chemistry</subject><subject>Protein Tyrosine Phosphatase, Non-Receptor Type 13 - genetics</subject><subject>Simulation</subject><subject>Thermodynamics</subject><subject>Topology</subject><subject>Trajectories</subject><subject>Value analysis</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFks2LEzEYxgdR3HX17EkdPAgi3X3zNWkuwlI_YcGDrteQmSZtynQym2RaC_7xvkNL63rxEHJ4fu_D-_EUxXMClwQku-o7ky5hClxKTkA8KM4JKDKpuIKHxTkAlZMpp_yseJLSCgCUmMLj4owoYIxLOC9-z8K6N9Gn0JXBlWloGpuS39gyR9Mlnz0KKZtsU-lCxNfOfbcoo91Y06bStNnGzuSxwprY7o5Eb_Jya3ZptM3bUC7DOrRhEYZU9jFk67v0tHjk0MQ-O_wXxe2njz9mXyY33z5_nV3fTJpKVHliqKG1FfO6Zk6YeU2crCwwA8pSzlXVEMqME8AbI4SsOWOukZzJubOs5g1nF8W7vW_a2n6odR_92sSdDsbrD_7ntQ5xoYdBqymREun3exrRtZ03tsNVtPeK7iudX-pF2GhaES55hQZvDgYx3A02Zb32qbFtazqL42sKFLfPAcHX_4CrMOA225EhTHHBKEJXe6iJIaVo3bETAnoMgR5DoE8hwIqXfw9w4g9XR6A8AGPlyU5orpCinCDy9j-IdkOLx_-VkX2xZ1cph3iEqeB4PqpQf7XXnQnaLDBs-vb7OCAQUSmBDf0Bl3fd6A</recordid><startdate>20081209</startdate><enddate>20081209</enddate><creator>Calosci, Nicoletta</creator><creator>Chi, Celestine N</creator><creator>Richter, Barbara</creator><creator>Camilloni, Carlo</creator><creator>Engström, Åke</creator><creator>Eklund, Lars</creator><creator>Travaglini-Allocatelli, Carlo</creator><creator>Gianni, Stefano</creator><creator>Vendruscolo, Michele</creator><creator>Jemth, Per</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7ST</scope><scope>7U6</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DF2</scope></search><sort><creationdate>20081209</creationdate><title>Comparison of successive transition states for folding reveals alternative early folding pathways of two homologous proteins</title><author>Calosci, Nicoletta ; Chi, Celestine N ; Richter, Barbara ; Camilloni, Carlo ; Engström, Åke ; Eklund, Lars ; Travaglini-Allocatelli, Carlo ; Gianni, Stefano ; Vendruscolo, Michele ; Jemth, Per</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c656t-a2a2be5dbb3f5adb1f76e03a09e24496c123af504ca557b433fc7437dfe3b4c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Biochemical mechanisms</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Chemical reactions</topic><topic>Computer Simulation</topic><topic>energy landscape</topic><topic>Energy value</topic><topic>Free energy</topic><topic>Kinetics</topic><topic>MEDICIN</topic><topic>MEDICINE</topic><topic>Models, Chemical</topic><topic>Molecular dynamics</topic><topic>Molecules</topic><topic>Mutagenesis</topic><topic>Nerve Tissue Proteins - chemistry</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>PDZ Domains</topic><topic>phi analysis</topic><topic>Protein Folding</topic><topic>Protein Tyrosine Phosphatase, Non-Receptor Type 13 - chemistry</topic><topic>Protein Tyrosine Phosphatase, Non-Receptor Type 13 - genetics</topic><topic>Simulation</topic><topic>Thermodynamics</topic><topic>Topology</topic><topic>Trajectories</topic><topic>Value analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calosci, Nicoletta</creatorcontrib><creatorcontrib>Chi, Celestine N</creatorcontrib><creatorcontrib>Richter, Barbara</creatorcontrib><creatorcontrib>Camilloni, Carlo</creatorcontrib><creatorcontrib>Engström, Åke</creatorcontrib><creatorcontrib>Eklund, Lars</creatorcontrib><creatorcontrib>Travaglini-Allocatelli, Carlo</creatorcontrib><creatorcontrib>Gianni, Stefano</creatorcontrib><creatorcontrib>Vendruscolo, Michele</creatorcontrib><creatorcontrib>Jemth, Per</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Uppsala universitet</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calosci, Nicoletta</au><au>Chi, Celestine N</au><au>Richter, Barbara</au><au>Camilloni, Carlo</au><au>Engström, Åke</au><au>Eklund, Lars</au><au>Travaglini-Allocatelli, Carlo</au><au>Gianni, Stefano</au><au>Vendruscolo, Michele</au><au>Jemth, Per</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of successive transition states for folding reveals alternative early folding pathways of two homologous proteins</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2008-12-09</date><risdate>2008</risdate><volume>105</volume><issue>49</issue><spage>19241</spage><epage>19246</epage><pages>19241-19246</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>The energy landscape theory provides a general framework for describing protein folding reactions. Because a large number of studies, however, have focused on two-state proteins with single well-defined folding pathways and without detectable intermediates, the extent to which free energy landscapes are shaped up by the native topology at the early stages of the folding process has not been fully characterized experimentally. To this end, we have investigated the folding mechanisms of two homologous three-state proteins, PTP-BL PDZ2 and PSD-95 PDZ3, and compared the early and late transition states on their folding pathways. Through a combination of Φ value analysis and molecular dynamics simulations we obtained atomic-level structures of the transition states of these homologous three-state proteins and found that the late transition states are much more structurally similar than the early ones. Our findings thus reveal that, while the native state topology defines essentially in a unique way the late stages of folding, it leaves significant freedom to the early events, a result that reflects the funneling of the free energy landscape toward the native state.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>19033470</pmid><doi>10.1073/pnas.0804774105</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2008-12, Vol.105 (49), p.19241-19246
issn 0027-8424
1091-6490
1091-6490
language eng
recordid cdi_crossref_primary_10_1073_pnas_0804774105
source PubMed Central Free; JSTOR Archival Journals and Primary Sources Collection
subjects Biochemical mechanisms
Biochemistry
Biological Sciences
Chemical reactions
Computer Simulation
energy landscape
Energy value
Free energy
Kinetics
MEDICIN
MEDICINE
Models, Chemical
Molecular dynamics
Molecules
Mutagenesis
Nerve Tissue Proteins - chemistry
Nerve Tissue Proteins - genetics
PDZ Domains
phi analysis
Protein Folding
Protein Tyrosine Phosphatase, Non-Receptor Type 13 - chemistry
Protein Tyrosine Phosphatase, Non-Receptor Type 13 - genetics
Simulation
Thermodynamics
Topology
Trajectories
Value analysis
title Comparison of successive transition states for folding reveals alternative early folding pathways of two homologous proteins
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T11%3A20%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20successive%20transition%20states%20for%20folding%20reveals%20alternative%20early%20folding%20pathways%20of%20two%20homologous%20proteins&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Calosci,%20Nicoletta&rft.date=2008-12-09&rft.volume=105&rft.issue=49&rft.spage=19241&rft.epage=19246&rft.pages=19241-19246&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0804774105&rft_dat=%3Cjstor_cross%3E25465629%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c656t-a2a2be5dbb3f5adb1f76e03a09e24496c123af504ca557b433fc7437dfe3b4c43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201394532&rft_id=info:pmid/19033470&rft_jstor_id=25465629&rfr_iscdi=true