Loading…

E-cadherin is under constitutive actomyosin-generated tension that is increased at cell–cell contacts upon externally applied stretch

Classical cadherins are transmembrane proteins at the core of intercellular adhesion complexes in cohesive metazoan tissues. The extracellular domain of classical cadherins forms intercellular bonds with cadherins on neighboring cells, whereas the cytoplasmic domain recruits catenins, which in turn...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2012-07, Vol.109 (31), p.12568-12573
Main Authors: Borghi, Nicolas, Sorokina, Maria, Shcherbakova, Olga G, Weis, William I, Pruitt, Beth L, Nelson, W. James, Dunn, Alexander R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c572t-9759bd98542a1254ffbe0cb6e5e93febfe9ebc3db8dd6c1c55e699946f63a2f83
cites cdi_FETCH-LOGICAL-c572t-9759bd98542a1254ffbe0cb6e5e93febfe9ebc3db8dd6c1c55e699946f63a2f83
container_end_page 12573
container_issue 31
container_start_page 12568
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 109
creator Borghi, Nicolas
Sorokina, Maria
Shcherbakova, Olga G
Weis, William I
Pruitt, Beth L
Nelson, W. James
Dunn, Alexander R
description Classical cadherins are transmembrane proteins at the core of intercellular adhesion complexes in cohesive metazoan tissues. The extracellular domain of classical cadherins forms intercellular bonds with cadherins on neighboring cells, whereas the cytoplasmic domain recruits catenins, which in turn associate with additional cytoskeleton binding and regulatory proteins. Cadherin/catenin complexes are hypothesized to play a role in the transduction of mechanical forces that shape cells and tissues during development, regeneration, and disease. Whether mechanical forces are transduced directly through cadherins is unknown. To address this question, we used a Förster resonance energy transfer (FRET)-based molecular tension sensor to test the origin and magnitude of tensile forces transmitted through the cytoplasmic domain of E-cadherin in epithelial cells. We show that the actomyosin cytoskeleton exerts pN-tensile force on E-cadherin, and that this tension requires the catenin-binding domain of E-cadherin and αE-catenin. Surprisingly, the actomyosin cytoskeleton constitutively exerts tension on E-cadherin at the plasma membrane regardless of whether or not E-cadherin is recruited to cell–cell contacts, although tension is further increased at cell–cell contacts when adhering cells are stretched. Our findings thus point to a constitutive role of E-cadherin in transducing mechanical forces between the actomyosin cytoskeleton and the plasma membrane, not only at cell–cell junctions but throughout the cell surface.
doi_str_mv 10.1073/pnas.1204390109
format article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_1204390109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41685439</jstor_id><sourcerecordid>41685439</sourcerecordid><originalsourceid>FETCH-LOGICAL-c572t-9759bd98542a1254ffbe0cb6e5e93febfe9ebc3db8dd6c1c55e699946f63a2f83</originalsourceid><addsrcrecordid>eNpdks9u1DAQxiMEokvhzAmIxAUOaf0nceJLpaoqFGklDtCz5TiTXa-ydrCdFXvjxgPwhn2S2sqyhV48suc334ztL8teY3SGUU3PRyP9GSaopBxhxJ9ki7jigpUcPc0WCJG6aEpSnmQvvN8ghHjVoOfZCSENIow2i-z3daFktwanTa59PpkOXK6s8UGHKegd5FIFu91br02xAgNOBujyAMZra_KwliHVaaMcSB8zca9gGO5-_UkhSYWoEJXHiMPPAM7IYdjnchwHHXkfHAS1fpk96-Xg4dUhnma3n66_X90Uy6-fv1xdLgtV1SQUvK542_GmKonEpCr7vgWkWgYVcNpD2wOHVtGubbqOKayqChjnvGQ9o5L0DT3NLmbdcWq30CkwwclBjE5vpdsLK7X4P2P0WqzsTtASY87rKPBxFlg_Kru5XIp0hgiNg1Gyw5H9cGjm7I8JfBBb7dOzSAN28gIjipqa1phH9P0jdGOn9FQzVWOGq9T8fKaUs9476I8TYCSSIUQyhHgwRKx4--99j_xfB0QgPwCp8kGOC4qjUMUS8mZGNj5Yd2RKzOI_0NTj3ZzvpRVy5bQXt98IwgwhTDgpG3oPMx_TXw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1030716157</pqid></control><display><type>article</type><title>E-cadherin is under constitutive actomyosin-generated tension that is increased at cell–cell contacts upon externally applied stretch</title><source>JSTOR Archival Journals</source><source>PubMed Central</source><creator>Borghi, Nicolas ; Sorokina, Maria ; Shcherbakova, Olga G ; Weis, William I ; Pruitt, Beth L ; Nelson, W. James ; Dunn, Alexander R</creator><creatorcontrib>Borghi, Nicolas ; Sorokina, Maria ; Shcherbakova, Olga G ; Weis, William I ; Pruitt, Beth L ; Nelson, W. James ; Dunn, Alexander R</creatorcontrib><description>Classical cadherins are transmembrane proteins at the core of intercellular adhesion complexes in cohesive metazoan tissues. The extracellular domain of classical cadherins forms intercellular bonds with cadherins on neighboring cells, whereas the cytoplasmic domain recruits catenins, which in turn associate with additional cytoskeleton binding and regulatory proteins. Cadherin/catenin complexes are hypothesized to play a role in the transduction of mechanical forces that shape cells and tissues during development, regeneration, and disease. Whether mechanical forces are transduced directly through cadherins is unknown. To address this question, we used a Förster resonance energy transfer (FRET)-based molecular tension sensor to test the origin and magnitude of tensile forces transmitted through the cytoplasmic domain of E-cadherin in epithelial cells. We show that the actomyosin cytoskeleton exerts pN-tensile force on E-cadherin, and that this tension requires the catenin-binding domain of E-cadherin and αE-catenin. Surprisingly, the actomyosin cytoskeleton constitutively exerts tension on E-cadherin at the plasma membrane regardless of whether or not E-cadherin is recruited to cell–cell contacts, although tension is further increased at cell–cell contacts when adhering cells are stretched. Our findings thus point to a constitutive role of E-cadherin in transducing mechanical forces between the actomyosin cytoskeleton and the plasma membrane, not only at cell–cell junctions but throughout the cell surface.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1204390109</identifier><identifier>PMID: 22802638</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Actins ; Actomyosin - genetics ; Actomyosin - metabolism ; alpha Catenin - genetics ; alpha Catenin - metabolism ; Animalia ; Animals ; Binding sites ; Biological Sciences ; Cadherins ; Cadherins - genetics ; Cadherins - metabolism ; Cell adhesion ; Cell Adhesion - physiology ; Cell Communication - physiology ; Cell Line ; Cell membranes ; Cells ; Cytoskeleton ; Cytoskeleton - genetics ; Cytoskeleton - metabolism ; Dogs ; Endothelial cells ; energy transfer ; Epithelial cells ; Epithelial Cells - cytology ; Epithelial Cells - metabolism ; Intercellular junctions ; Life Sciences ; Mechanotransduction, Cellular - physiology ; Membranes ; plasma membrane ; Proteins ; regulatory proteins ; Sensors ; Signal transduction ; tissues ; transmembrane proteins</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2012-07, Vol.109 (31), p.12568-12573</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jul 31, 2012</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c572t-9759bd98542a1254ffbe0cb6e5e93febfe9ebc3db8dd6c1c55e699946f63a2f83</citedby><cites>FETCH-LOGICAL-c572t-9759bd98542a1254ffbe0cb6e5e93febfe9ebc3db8dd6c1c55e699946f63a2f83</cites><orcidid>0000-0002-1558-5246</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/109/31.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41685439$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41685439$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22802638$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02325432$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Borghi, Nicolas</creatorcontrib><creatorcontrib>Sorokina, Maria</creatorcontrib><creatorcontrib>Shcherbakova, Olga G</creatorcontrib><creatorcontrib>Weis, William I</creatorcontrib><creatorcontrib>Pruitt, Beth L</creatorcontrib><creatorcontrib>Nelson, W. James</creatorcontrib><creatorcontrib>Dunn, Alexander R</creatorcontrib><title>E-cadherin is under constitutive actomyosin-generated tension that is increased at cell–cell contacts upon externally applied stretch</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Classical cadherins are transmembrane proteins at the core of intercellular adhesion complexes in cohesive metazoan tissues. The extracellular domain of classical cadherins forms intercellular bonds with cadherins on neighboring cells, whereas the cytoplasmic domain recruits catenins, which in turn associate with additional cytoskeleton binding and regulatory proteins. Cadherin/catenin complexes are hypothesized to play a role in the transduction of mechanical forces that shape cells and tissues during development, regeneration, and disease. Whether mechanical forces are transduced directly through cadherins is unknown. To address this question, we used a Förster resonance energy transfer (FRET)-based molecular tension sensor to test the origin and magnitude of tensile forces transmitted through the cytoplasmic domain of E-cadherin in epithelial cells. We show that the actomyosin cytoskeleton exerts pN-tensile force on E-cadherin, and that this tension requires the catenin-binding domain of E-cadherin and αE-catenin. Surprisingly, the actomyosin cytoskeleton constitutively exerts tension on E-cadherin at the plasma membrane regardless of whether or not E-cadherin is recruited to cell–cell contacts, although tension is further increased at cell–cell contacts when adhering cells are stretched. Our findings thus point to a constitutive role of E-cadherin in transducing mechanical forces between the actomyosin cytoskeleton and the plasma membrane, not only at cell–cell junctions but throughout the cell surface.</description><subject>Actins</subject><subject>Actomyosin - genetics</subject><subject>Actomyosin - metabolism</subject><subject>alpha Catenin - genetics</subject><subject>alpha Catenin - metabolism</subject><subject>Animalia</subject><subject>Animals</subject><subject>Binding sites</subject><subject>Biological Sciences</subject><subject>Cadherins</subject><subject>Cadherins - genetics</subject><subject>Cadherins - metabolism</subject><subject>Cell adhesion</subject><subject>Cell Adhesion - physiology</subject><subject>Cell Communication - physiology</subject><subject>Cell Line</subject><subject>Cell membranes</subject><subject>Cells</subject><subject>Cytoskeleton</subject><subject>Cytoskeleton - genetics</subject><subject>Cytoskeleton - metabolism</subject><subject>Dogs</subject><subject>Endothelial cells</subject><subject>energy transfer</subject><subject>Epithelial cells</subject><subject>Epithelial Cells - cytology</subject><subject>Epithelial Cells - metabolism</subject><subject>Intercellular junctions</subject><subject>Life Sciences</subject><subject>Mechanotransduction, Cellular - physiology</subject><subject>Membranes</subject><subject>plasma membrane</subject><subject>Proteins</subject><subject>regulatory proteins</subject><subject>Sensors</subject><subject>Signal transduction</subject><subject>tissues</subject><subject>transmembrane proteins</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpdks9u1DAQxiMEokvhzAmIxAUOaf0nceJLpaoqFGklDtCz5TiTXa-ydrCdFXvjxgPwhn2S2sqyhV48suc334ztL8teY3SGUU3PRyP9GSaopBxhxJ9ki7jigpUcPc0WCJG6aEpSnmQvvN8ghHjVoOfZCSENIow2i-z3daFktwanTa59PpkOXK6s8UGHKegd5FIFu91br02xAgNOBujyAMZra_KwliHVaaMcSB8zca9gGO5-_UkhSYWoEJXHiMPPAM7IYdjnchwHHXkfHAS1fpk96-Xg4dUhnma3n66_X90Uy6-fv1xdLgtV1SQUvK542_GmKonEpCr7vgWkWgYVcNpD2wOHVtGubbqOKayqChjnvGQ9o5L0DT3NLmbdcWq30CkwwclBjE5vpdsLK7X4P2P0WqzsTtASY87rKPBxFlg_Kru5XIp0hgiNg1Gyw5H9cGjm7I8JfBBb7dOzSAN28gIjipqa1phH9P0jdGOn9FQzVWOGq9T8fKaUs9476I8TYCSSIUQyhHgwRKx4--99j_xfB0QgPwCp8kGOC4qjUMUS8mZGNj5Yd2RKzOI_0NTj3ZzvpRVy5bQXt98IwgwhTDgpG3oPMx_TXw</recordid><startdate>20120731</startdate><enddate>20120731</enddate><creator>Borghi, Nicolas</creator><creator>Sorokina, Maria</creator><creator>Shcherbakova, Olga G</creator><creator>Weis, William I</creator><creator>Pruitt, Beth L</creator><creator>Nelson, W. James</creator><creator>Dunn, Alexander R</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1558-5246</orcidid></search><sort><creationdate>20120731</creationdate><title>E-cadherin is under constitutive actomyosin-generated tension that is increased at cell–cell contacts upon externally applied stretch</title><author>Borghi, Nicolas ; Sorokina, Maria ; Shcherbakova, Olga G ; Weis, William I ; Pruitt, Beth L ; Nelson, W. James ; Dunn, Alexander R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c572t-9759bd98542a1254ffbe0cb6e5e93febfe9ebc3db8dd6c1c55e699946f63a2f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Actins</topic><topic>Actomyosin - genetics</topic><topic>Actomyosin - metabolism</topic><topic>alpha Catenin - genetics</topic><topic>alpha Catenin - metabolism</topic><topic>Animalia</topic><topic>Animals</topic><topic>Binding sites</topic><topic>Biological Sciences</topic><topic>Cadherins</topic><topic>Cadherins - genetics</topic><topic>Cadherins - metabolism</topic><topic>Cell adhesion</topic><topic>Cell Adhesion - physiology</topic><topic>Cell Communication - physiology</topic><topic>Cell Line</topic><topic>Cell membranes</topic><topic>Cells</topic><topic>Cytoskeleton</topic><topic>Cytoskeleton - genetics</topic><topic>Cytoskeleton - metabolism</topic><topic>Dogs</topic><topic>Endothelial cells</topic><topic>energy transfer</topic><topic>Epithelial cells</topic><topic>Epithelial Cells - cytology</topic><topic>Epithelial Cells - metabolism</topic><topic>Intercellular junctions</topic><topic>Life Sciences</topic><topic>Mechanotransduction, Cellular - physiology</topic><topic>Membranes</topic><topic>plasma membrane</topic><topic>Proteins</topic><topic>regulatory proteins</topic><topic>Sensors</topic><topic>Signal transduction</topic><topic>tissues</topic><topic>transmembrane proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borghi, Nicolas</creatorcontrib><creatorcontrib>Sorokina, Maria</creatorcontrib><creatorcontrib>Shcherbakova, Olga G</creatorcontrib><creatorcontrib>Weis, William I</creatorcontrib><creatorcontrib>Pruitt, Beth L</creatorcontrib><creatorcontrib>Nelson, W. James</creatorcontrib><creatorcontrib>Dunn, Alexander R</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borghi, Nicolas</au><au>Sorokina, Maria</au><au>Shcherbakova, Olga G</au><au>Weis, William I</au><au>Pruitt, Beth L</au><au>Nelson, W. James</au><au>Dunn, Alexander R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>E-cadherin is under constitutive actomyosin-generated tension that is increased at cell–cell contacts upon externally applied stretch</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2012-07-31</date><risdate>2012</risdate><volume>109</volume><issue>31</issue><spage>12568</spage><epage>12573</epage><pages>12568-12573</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Classical cadherins are transmembrane proteins at the core of intercellular adhesion complexes in cohesive metazoan tissues. The extracellular domain of classical cadherins forms intercellular bonds with cadherins on neighboring cells, whereas the cytoplasmic domain recruits catenins, which in turn associate with additional cytoskeleton binding and regulatory proteins. Cadherin/catenin complexes are hypothesized to play a role in the transduction of mechanical forces that shape cells and tissues during development, regeneration, and disease. Whether mechanical forces are transduced directly through cadherins is unknown. To address this question, we used a Förster resonance energy transfer (FRET)-based molecular tension sensor to test the origin and magnitude of tensile forces transmitted through the cytoplasmic domain of E-cadherin in epithelial cells. We show that the actomyosin cytoskeleton exerts pN-tensile force on E-cadherin, and that this tension requires the catenin-binding domain of E-cadherin and αE-catenin. Surprisingly, the actomyosin cytoskeleton constitutively exerts tension on E-cadherin at the plasma membrane regardless of whether or not E-cadherin is recruited to cell–cell contacts, although tension is further increased at cell–cell contacts when adhering cells are stretched. Our findings thus point to a constitutive role of E-cadherin in transducing mechanical forces between the actomyosin cytoskeleton and the plasma membrane, not only at cell–cell junctions but throughout the cell surface.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>22802638</pmid><doi>10.1073/pnas.1204390109</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-1558-5246</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2012-07, Vol.109 (31), p.12568-12573
issn 0027-8424
1091-6490
language eng
recordid cdi_crossref_primary_10_1073_pnas_1204390109
source JSTOR Archival Journals; PubMed Central
subjects Actins
Actomyosin - genetics
Actomyosin - metabolism
alpha Catenin - genetics
alpha Catenin - metabolism
Animalia
Animals
Binding sites
Biological Sciences
Cadherins
Cadherins - genetics
Cadherins - metabolism
Cell adhesion
Cell Adhesion - physiology
Cell Communication - physiology
Cell Line
Cell membranes
Cells
Cytoskeleton
Cytoskeleton - genetics
Cytoskeleton - metabolism
Dogs
Endothelial cells
energy transfer
Epithelial cells
Epithelial Cells - cytology
Epithelial Cells - metabolism
Intercellular junctions
Life Sciences
Mechanotransduction, Cellular - physiology
Membranes
plasma membrane
Proteins
regulatory proteins
Sensors
Signal transduction
tissues
transmembrane proteins
title E-cadherin is under constitutive actomyosin-generated tension that is increased at cell–cell contacts upon externally applied stretch
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T12%3A43%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=E-cadherin%20is%20under%20constitutive%20actomyosin-generated%20tension%20that%20is%20increased%20at%20cell%E2%80%93cell%20contacts%20upon%20externally%20applied%20stretch&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Borghi,%20Nicolas&rft.date=2012-07-31&rft.volume=109&rft.issue=31&rft.spage=12568&rft.epage=12573&rft.pages=12568-12573&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1204390109&rft_dat=%3Cjstor_cross%3E41685439%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c572t-9759bd98542a1254ffbe0cb6e5e93febfe9ebc3db8dd6c1c55e699946f63a2f83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1030716157&rft_id=info:pmid/22802638&rft_jstor_id=41685439&rfr_iscdi=true