Loading…
E-cadherin is under constitutive actomyosin-generated tension that is increased at cell–cell contacts upon externally applied stretch
Classical cadherins are transmembrane proteins at the core of intercellular adhesion complexes in cohesive metazoan tissues. The extracellular domain of classical cadherins forms intercellular bonds with cadherins on neighboring cells, whereas the cytoplasmic domain recruits catenins, which in turn...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2012-07, Vol.109 (31), p.12568-12573 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c572t-9759bd98542a1254ffbe0cb6e5e93febfe9ebc3db8dd6c1c55e699946f63a2f83 |
---|---|
cites | cdi_FETCH-LOGICAL-c572t-9759bd98542a1254ffbe0cb6e5e93febfe9ebc3db8dd6c1c55e699946f63a2f83 |
container_end_page | 12573 |
container_issue | 31 |
container_start_page | 12568 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 109 |
creator | Borghi, Nicolas Sorokina, Maria Shcherbakova, Olga G Weis, William I Pruitt, Beth L Nelson, W. James Dunn, Alexander R |
description | Classical cadherins are transmembrane proteins at the core of intercellular adhesion complexes in cohesive metazoan tissues. The extracellular domain of classical cadherins forms intercellular bonds with cadherins on neighboring cells, whereas the cytoplasmic domain recruits catenins, which in turn associate with additional cytoskeleton binding and regulatory proteins. Cadherin/catenin complexes are hypothesized to play a role in the transduction of mechanical forces that shape cells and tissues during development, regeneration, and disease. Whether mechanical forces are transduced directly through cadherins is unknown. To address this question, we used a Förster resonance energy transfer (FRET)-based molecular tension sensor to test the origin and magnitude of tensile forces transmitted through the cytoplasmic domain of E-cadherin in epithelial cells. We show that the actomyosin cytoskeleton exerts pN-tensile force on E-cadherin, and that this tension requires the catenin-binding domain of E-cadherin and αE-catenin. Surprisingly, the actomyosin cytoskeleton constitutively exerts tension on E-cadherin at the plasma membrane regardless of whether or not E-cadherin is recruited to cell–cell contacts, although tension is further increased at cell–cell contacts when adhering cells are stretched. Our findings thus point to a constitutive role of E-cadherin in transducing mechanical forces between the actomyosin cytoskeleton and the plasma membrane, not only at cell–cell junctions but throughout the cell surface. |
doi_str_mv | 10.1073/pnas.1204390109 |
format | article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_1204390109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41685439</jstor_id><sourcerecordid>41685439</sourcerecordid><originalsourceid>FETCH-LOGICAL-c572t-9759bd98542a1254ffbe0cb6e5e93febfe9ebc3db8dd6c1c55e699946f63a2f83</originalsourceid><addsrcrecordid>eNpdks9u1DAQxiMEokvhzAmIxAUOaf0nceJLpaoqFGklDtCz5TiTXa-ydrCdFXvjxgPwhn2S2sqyhV48suc334ztL8teY3SGUU3PRyP9GSaopBxhxJ9ki7jigpUcPc0WCJG6aEpSnmQvvN8ghHjVoOfZCSENIow2i-z3daFktwanTa59PpkOXK6s8UGHKegd5FIFu91br02xAgNOBujyAMZra_KwliHVaaMcSB8zca9gGO5-_UkhSYWoEJXHiMPPAM7IYdjnchwHHXkfHAS1fpk96-Xg4dUhnma3n66_X90Uy6-fv1xdLgtV1SQUvK542_GmKonEpCr7vgWkWgYVcNpD2wOHVtGubbqOKayqChjnvGQ9o5L0DT3NLmbdcWq30CkwwclBjE5vpdsLK7X4P2P0WqzsTtASY87rKPBxFlg_Kru5XIp0hgiNg1Gyw5H9cGjm7I8JfBBb7dOzSAN28gIjipqa1phH9P0jdGOn9FQzVWOGq9T8fKaUs9476I8TYCSSIUQyhHgwRKx4--99j_xfB0QgPwCp8kGOC4qjUMUS8mZGNj5Yd2RKzOI_0NTj3ZzvpRVy5bQXt98IwgwhTDgpG3oPMx_TXw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1030716157</pqid></control><display><type>article</type><title>E-cadherin is under constitutive actomyosin-generated tension that is increased at cell–cell contacts upon externally applied stretch</title><source>JSTOR Archival Journals</source><source>PubMed Central</source><creator>Borghi, Nicolas ; Sorokina, Maria ; Shcherbakova, Olga G ; Weis, William I ; Pruitt, Beth L ; Nelson, W. James ; Dunn, Alexander R</creator><creatorcontrib>Borghi, Nicolas ; Sorokina, Maria ; Shcherbakova, Olga G ; Weis, William I ; Pruitt, Beth L ; Nelson, W. James ; Dunn, Alexander R</creatorcontrib><description>Classical cadherins are transmembrane proteins at the core of intercellular adhesion complexes in cohesive metazoan tissues. The extracellular domain of classical cadherins forms intercellular bonds with cadherins on neighboring cells, whereas the cytoplasmic domain recruits catenins, which in turn associate with additional cytoskeleton binding and regulatory proteins. Cadherin/catenin complexes are hypothesized to play a role in the transduction of mechanical forces that shape cells and tissues during development, regeneration, and disease. Whether mechanical forces are transduced directly through cadherins is unknown. To address this question, we used a Förster resonance energy transfer (FRET)-based molecular tension sensor to test the origin and magnitude of tensile forces transmitted through the cytoplasmic domain of E-cadherin in epithelial cells. We show that the actomyosin cytoskeleton exerts pN-tensile force on E-cadherin, and that this tension requires the catenin-binding domain of E-cadherin and αE-catenin. Surprisingly, the actomyosin cytoskeleton constitutively exerts tension on E-cadherin at the plasma membrane regardless of whether or not E-cadherin is recruited to cell–cell contacts, although tension is further increased at cell–cell contacts when adhering cells are stretched. Our findings thus point to a constitutive role of E-cadherin in transducing mechanical forces between the actomyosin cytoskeleton and the plasma membrane, not only at cell–cell junctions but throughout the cell surface.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1204390109</identifier><identifier>PMID: 22802638</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Actins ; Actomyosin - genetics ; Actomyosin - metabolism ; alpha Catenin - genetics ; alpha Catenin - metabolism ; Animalia ; Animals ; Binding sites ; Biological Sciences ; Cadherins ; Cadherins - genetics ; Cadherins - metabolism ; Cell adhesion ; Cell Adhesion - physiology ; Cell Communication - physiology ; Cell Line ; Cell membranes ; Cells ; Cytoskeleton ; Cytoskeleton - genetics ; Cytoskeleton - metabolism ; Dogs ; Endothelial cells ; energy transfer ; Epithelial cells ; Epithelial Cells - cytology ; Epithelial Cells - metabolism ; Intercellular junctions ; Life Sciences ; Mechanotransduction, Cellular - physiology ; Membranes ; plasma membrane ; Proteins ; regulatory proteins ; Sensors ; Signal transduction ; tissues ; transmembrane proteins</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2012-07, Vol.109 (31), p.12568-12573</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jul 31, 2012</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c572t-9759bd98542a1254ffbe0cb6e5e93febfe9ebc3db8dd6c1c55e699946f63a2f83</citedby><cites>FETCH-LOGICAL-c572t-9759bd98542a1254ffbe0cb6e5e93febfe9ebc3db8dd6c1c55e699946f63a2f83</cites><orcidid>0000-0002-1558-5246</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/109/31.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41685439$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41685439$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22802638$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02325432$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Borghi, Nicolas</creatorcontrib><creatorcontrib>Sorokina, Maria</creatorcontrib><creatorcontrib>Shcherbakova, Olga G</creatorcontrib><creatorcontrib>Weis, William I</creatorcontrib><creatorcontrib>Pruitt, Beth L</creatorcontrib><creatorcontrib>Nelson, W. James</creatorcontrib><creatorcontrib>Dunn, Alexander R</creatorcontrib><title>E-cadherin is under constitutive actomyosin-generated tension that is increased at cell–cell contacts upon externally applied stretch</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Classical cadherins are transmembrane proteins at the core of intercellular adhesion complexes in cohesive metazoan tissues. The extracellular domain of classical cadherins forms intercellular bonds with cadherins on neighboring cells, whereas the cytoplasmic domain recruits catenins, which in turn associate with additional cytoskeleton binding and regulatory proteins. Cadherin/catenin complexes are hypothesized to play a role in the transduction of mechanical forces that shape cells and tissues during development, regeneration, and disease. Whether mechanical forces are transduced directly through cadherins is unknown. To address this question, we used a Förster resonance energy transfer (FRET)-based molecular tension sensor to test the origin and magnitude of tensile forces transmitted through the cytoplasmic domain of E-cadherin in epithelial cells. We show that the actomyosin cytoskeleton exerts pN-tensile force on E-cadherin, and that this tension requires the catenin-binding domain of E-cadherin and αE-catenin. Surprisingly, the actomyosin cytoskeleton constitutively exerts tension on E-cadherin at the plasma membrane regardless of whether or not E-cadherin is recruited to cell–cell contacts, although tension is further increased at cell–cell contacts when adhering cells are stretched. Our findings thus point to a constitutive role of E-cadherin in transducing mechanical forces between the actomyosin cytoskeleton and the plasma membrane, not only at cell–cell junctions but throughout the cell surface.</description><subject>Actins</subject><subject>Actomyosin - genetics</subject><subject>Actomyosin - metabolism</subject><subject>alpha Catenin - genetics</subject><subject>alpha Catenin - metabolism</subject><subject>Animalia</subject><subject>Animals</subject><subject>Binding sites</subject><subject>Biological Sciences</subject><subject>Cadherins</subject><subject>Cadherins - genetics</subject><subject>Cadherins - metabolism</subject><subject>Cell adhesion</subject><subject>Cell Adhesion - physiology</subject><subject>Cell Communication - physiology</subject><subject>Cell Line</subject><subject>Cell membranes</subject><subject>Cells</subject><subject>Cytoskeleton</subject><subject>Cytoskeleton - genetics</subject><subject>Cytoskeleton - metabolism</subject><subject>Dogs</subject><subject>Endothelial cells</subject><subject>energy transfer</subject><subject>Epithelial cells</subject><subject>Epithelial Cells - cytology</subject><subject>Epithelial Cells - metabolism</subject><subject>Intercellular junctions</subject><subject>Life Sciences</subject><subject>Mechanotransduction, Cellular - physiology</subject><subject>Membranes</subject><subject>plasma membrane</subject><subject>Proteins</subject><subject>regulatory proteins</subject><subject>Sensors</subject><subject>Signal transduction</subject><subject>tissues</subject><subject>transmembrane proteins</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpdks9u1DAQxiMEokvhzAmIxAUOaf0nceJLpaoqFGklDtCz5TiTXa-ydrCdFXvjxgPwhn2S2sqyhV48suc334ztL8teY3SGUU3PRyP9GSaopBxhxJ9ki7jigpUcPc0WCJG6aEpSnmQvvN8ghHjVoOfZCSENIow2i-z3daFktwanTa59PpkOXK6s8UGHKegd5FIFu91br02xAgNOBujyAMZra_KwliHVaaMcSB8zca9gGO5-_UkhSYWoEJXHiMPPAM7IYdjnchwHHXkfHAS1fpk96-Xg4dUhnma3n66_X90Uy6-fv1xdLgtV1SQUvK542_GmKonEpCr7vgWkWgYVcNpD2wOHVtGubbqOKayqChjnvGQ9o5L0DT3NLmbdcWq30CkwwclBjE5vpdsLK7X4P2P0WqzsTtASY87rKPBxFlg_Kru5XIp0hgiNg1Gyw5H9cGjm7I8JfBBb7dOzSAN28gIjipqa1phH9P0jdGOn9FQzVWOGq9T8fKaUs9476I8TYCSSIUQyhHgwRKx4--99j_xfB0QgPwCp8kGOC4qjUMUS8mZGNj5Yd2RKzOI_0NTj3ZzvpRVy5bQXt98IwgwhTDgpG3oPMx_TXw</recordid><startdate>20120731</startdate><enddate>20120731</enddate><creator>Borghi, Nicolas</creator><creator>Sorokina, Maria</creator><creator>Shcherbakova, Olga G</creator><creator>Weis, William I</creator><creator>Pruitt, Beth L</creator><creator>Nelson, W. James</creator><creator>Dunn, Alexander R</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1558-5246</orcidid></search><sort><creationdate>20120731</creationdate><title>E-cadherin is under constitutive actomyosin-generated tension that is increased at cell–cell contacts upon externally applied stretch</title><author>Borghi, Nicolas ; Sorokina, Maria ; Shcherbakova, Olga G ; Weis, William I ; Pruitt, Beth L ; Nelson, W. James ; Dunn, Alexander R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c572t-9759bd98542a1254ffbe0cb6e5e93febfe9ebc3db8dd6c1c55e699946f63a2f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Actins</topic><topic>Actomyosin - genetics</topic><topic>Actomyosin - metabolism</topic><topic>alpha Catenin - genetics</topic><topic>alpha Catenin - metabolism</topic><topic>Animalia</topic><topic>Animals</topic><topic>Binding sites</topic><topic>Biological Sciences</topic><topic>Cadherins</topic><topic>Cadherins - genetics</topic><topic>Cadherins - metabolism</topic><topic>Cell adhesion</topic><topic>Cell Adhesion - physiology</topic><topic>Cell Communication - physiology</topic><topic>Cell Line</topic><topic>Cell membranes</topic><topic>Cells</topic><topic>Cytoskeleton</topic><topic>Cytoskeleton - genetics</topic><topic>Cytoskeleton - metabolism</topic><topic>Dogs</topic><topic>Endothelial cells</topic><topic>energy transfer</topic><topic>Epithelial cells</topic><topic>Epithelial Cells - cytology</topic><topic>Epithelial Cells - metabolism</topic><topic>Intercellular junctions</topic><topic>Life Sciences</topic><topic>Mechanotransduction, Cellular - physiology</topic><topic>Membranes</topic><topic>plasma membrane</topic><topic>Proteins</topic><topic>regulatory proteins</topic><topic>Sensors</topic><topic>Signal transduction</topic><topic>tissues</topic><topic>transmembrane proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borghi, Nicolas</creatorcontrib><creatorcontrib>Sorokina, Maria</creatorcontrib><creatorcontrib>Shcherbakova, Olga G</creatorcontrib><creatorcontrib>Weis, William I</creatorcontrib><creatorcontrib>Pruitt, Beth L</creatorcontrib><creatorcontrib>Nelson, W. James</creatorcontrib><creatorcontrib>Dunn, Alexander R</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borghi, Nicolas</au><au>Sorokina, Maria</au><au>Shcherbakova, Olga G</au><au>Weis, William I</au><au>Pruitt, Beth L</au><au>Nelson, W. James</au><au>Dunn, Alexander R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>E-cadherin is under constitutive actomyosin-generated tension that is increased at cell–cell contacts upon externally applied stretch</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2012-07-31</date><risdate>2012</risdate><volume>109</volume><issue>31</issue><spage>12568</spage><epage>12573</epage><pages>12568-12573</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Classical cadherins are transmembrane proteins at the core of intercellular adhesion complexes in cohesive metazoan tissues. The extracellular domain of classical cadherins forms intercellular bonds with cadherins on neighboring cells, whereas the cytoplasmic domain recruits catenins, which in turn associate with additional cytoskeleton binding and regulatory proteins. Cadherin/catenin complexes are hypothesized to play a role in the transduction of mechanical forces that shape cells and tissues during development, regeneration, and disease. Whether mechanical forces are transduced directly through cadherins is unknown. To address this question, we used a Förster resonance energy transfer (FRET)-based molecular tension sensor to test the origin and magnitude of tensile forces transmitted through the cytoplasmic domain of E-cadherin in epithelial cells. We show that the actomyosin cytoskeleton exerts pN-tensile force on E-cadherin, and that this tension requires the catenin-binding domain of E-cadherin and αE-catenin. Surprisingly, the actomyosin cytoskeleton constitutively exerts tension on E-cadherin at the plasma membrane regardless of whether or not E-cadherin is recruited to cell–cell contacts, although tension is further increased at cell–cell contacts when adhering cells are stretched. Our findings thus point to a constitutive role of E-cadherin in transducing mechanical forces between the actomyosin cytoskeleton and the plasma membrane, not only at cell–cell junctions but throughout the cell surface.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>22802638</pmid><doi>10.1073/pnas.1204390109</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-1558-5246</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2012-07, Vol.109 (31), p.12568-12573 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_crossref_primary_10_1073_pnas_1204390109 |
source | JSTOR Archival Journals; PubMed Central |
subjects | Actins Actomyosin - genetics Actomyosin - metabolism alpha Catenin - genetics alpha Catenin - metabolism Animalia Animals Binding sites Biological Sciences Cadherins Cadherins - genetics Cadherins - metabolism Cell adhesion Cell Adhesion - physiology Cell Communication - physiology Cell Line Cell membranes Cells Cytoskeleton Cytoskeleton - genetics Cytoskeleton - metabolism Dogs Endothelial cells energy transfer Epithelial cells Epithelial Cells - cytology Epithelial Cells - metabolism Intercellular junctions Life Sciences Mechanotransduction, Cellular - physiology Membranes plasma membrane Proteins regulatory proteins Sensors Signal transduction tissues transmembrane proteins |
title | E-cadherin is under constitutive actomyosin-generated tension that is increased at cell–cell contacts upon externally applied stretch |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T12%3A43%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=E-cadherin%20is%20under%20constitutive%20actomyosin-generated%20tension%20that%20is%20increased%20at%20cell%E2%80%93cell%20contacts%20upon%20externally%20applied%20stretch&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Borghi,%20Nicolas&rft.date=2012-07-31&rft.volume=109&rft.issue=31&rft.spage=12568&rft.epage=12573&rft.pages=12568-12573&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1204390109&rft_dat=%3Cjstor_cross%3E41685439%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c572t-9759bd98542a1254ffbe0cb6e5e93febfe9ebc3db8dd6c1c55e699946f63a2f83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1030716157&rft_id=info:pmid/22802638&rft_jstor_id=41685439&rfr_iscdi=true |