Loading…
Wnt signaling potentiates nevogenesis
Cellular senescence is a stable proliferation arrest associated with an altered secretory pathway (senescence-associated secretory phenotype). Cellular senescence is also a tumor suppressor mechanism, to which both proliferation arrest and senescence-associated secretory phenotype are thought to con...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2013-10, Vol.110 (40), p.16009-16014 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c488t-c0f307d7923d2ee009735ca62fb71e073037369378d2ae59f2d5af72ab509bbf3 |
---|---|
cites | cdi_FETCH-LOGICAL-c488t-c0f307d7923d2ee009735ca62fb71e073037369378d2ae59f2d5af72ab509bbf3 |
container_end_page | 16014 |
container_issue | 40 |
container_start_page | 16009 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 110 |
creator | Pawlikowski, Jeff S. McBryan, Tony van Tuyn, John Drotar, Mark E. Hewitt, Rachael N. Maier, Andrea B. King, Ayala Blyth, Karen Wu, Hong Adams, Peter D. |
description | Cellular senescence is a stable proliferation arrest associated with an altered secretory pathway (senescence-associated secretory phenotype). Cellular senescence is also a tumor suppressor mechanism, to which both proliferation arrest and senescence-associated secretory phenotype are thought to contribute. The melanocytes within benign human nevi are a paradigm for tumor-suppressive senescent cells in a premalignant neoplasm. Here a comparison of proliferating and senescent melanocytes and melanoma cell lines by RNA sequencing emphasizes the importance of senescence-associated proliferation arrest in suppression of transformation. Previous studies showed that activation of the Wnt signaling pathway can delay or bypass senescence. Consistent with this, we present evidence that repression of Wnt signaling contributes to melanocyte senescence in vitro. Surprisingly, Wnt signaling is active in many senescent human melanocytes in nevi, and this is linked to histological indicators of higher proliferative and malignant potential. In a mouse, activated Wnt signaling delays senescence-associated proliferation arrest to expand the population of senescent oncogene-expressing melanocytes. These results suggest that Wnt signaling can potentiate nevogenesis in vivo by delaying senescence. Further, we suggest that activated Wnt signaling in human nevi undermines senescence-mediated tumor suppression and enhances the probability of malignancy. |
doi_str_mv | 10.1073/pnas.1303491110 |
format | article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_1303491110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23749704</jstor_id><sourcerecordid>23749704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-c0f307d7923d2ee009735ca62fb71e073037369378d2ae59f2d5af72ab509bbf3</originalsourceid><addsrcrecordid>eNpdkU1rGzEQhkVpaBw3557aGkIgl41HGu1qdSkUky8I9NCYHIV2V7uVWUuutDbk30euHSfNSYd55tHMO4R8oXBJQeB05XS8pAjIJaUUPpARBUmzgkv4SEYATGQlZ_yYnMS4AACZl_CJHDMOHEsoRuT80Q2TaDune-u6ycoPxg1WDyZOnNn4zjgTbfxMjlrdR3O6f8dkfn31MLvN7n_d3M1-3mc1L8shq6FFEI2QDBtmTPpOYF7rgrWVoCbNCyiwkCjKhmmTy5Y1uW4F01UOsqpaHJMfO-9qXS1NU6dZgu7VKtilDk_Ka6v-rzj7R3V-o1BIKooyCS72guD_rk0c1NLG2vS9dsavo6KcI5aScprQs3fowq9DyuEfBTyXhcBETXdUHXyMwbSHYSio7QnU9gTq9QSp49vbHQ78S-YJmOyBbedBl3w8KYuUWkK-7pBFHHx4VaDgUiTNmHzf1Vvtle6CjWr-m8G2Oa1GKeIzzyieRQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1440459673</pqid></control><display><type>article</type><title>Wnt signaling potentiates nevogenesis</title><source>PubMed (Medline)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Pawlikowski, Jeff S. ; McBryan, Tony ; van Tuyn, John ; Drotar, Mark E. ; Hewitt, Rachael N. ; Maier, Andrea B. ; King, Ayala ; Blyth, Karen ; Wu, Hong ; Adams, Peter D.</creator><creatorcontrib>Pawlikowski, Jeff S. ; McBryan, Tony ; van Tuyn, John ; Drotar, Mark E. ; Hewitt, Rachael N. ; Maier, Andrea B. ; King, Ayala ; Blyth, Karen ; Wu, Hong ; Adams, Peter D.</creatorcontrib><description>Cellular senescence is a stable proliferation arrest associated with an altered secretory pathway (senescence-associated secretory phenotype). Cellular senescence is also a tumor suppressor mechanism, to which both proliferation arrest and senescence-associated secretory phenotype are thought to contribute. The melanocytes within benign human nevi are a paradigm for tumor-suppressive senescent cells in a premalignant neoplasm. Here a comparison of proliferating and senescent melanocytes and melanoma cell lines by RNA sequencing emphasizes the importance of senescence-associated proliferation arrest in suppression of transformation. Previous studies showed that activation of the Wnt signaling pathway can delay or bypass senescence. Consistent with this, we present evidence that repression of Wnt signaling contributes to melanocyte senescence in vitro. Surprisingly, Wnt signaling is active in many senescent human melanocytes in nevi, and this is linked to histological indicators of higher proliferative and malignant potential. In a mouse, activated Wnt signaling delays senescence-associated proliferation arrest to expand the population of senescent oncogene-expressing melanocytes. These results suggest that Wnt signaling can potentiate nevogenesis in vivo by delaying senescence. Further, we suggest that activated Wnt signaling in human nevi undermines senescence-mediated tumor suppression and enhances the probability of malignancy.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1303491110</identifier><identifier>PMID: 24043806</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological Sciences ; Cell Line, Tumor ; Cell lines ; Cells ; Cellular senescence ; Cellular Senescence - physiology ; Cyclins ; DNA Primers - genetics ; Genetic vectors ; Genotype & phenotype ; HEK293 Cells ; Humans ; Immunoblotting ; Immunohistochemistry ; Melanocytes ; Melanocytes - cytology ; Melanocytes - physiology ; Melanoma ; Melanoma - etiology ; Mice ; Microarray Analysis ; Nevus ; Nevus - metabolism ; Nevus - physiopathology ; Real-Time Polymerase Chain Reaction ; Repression ; Ribonucleic acid ; RNA ; Rodents ; Sequence Analysis, RNA ; Skin ; Tumors ; Wnt Signaling Pathway - physiology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-10, Vol.110 (40), p.16009-16014</ispartof><rights>copyright © 1993–2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Oct 1, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-c0f307d7923d2ee009735ca62fb71e073037369378d2ae59f2d5af72ab509bbf3</citedby><cites>FETCH-LOGICAL-c488t-c0f307d7923d2ee009735ca62fb71e073037369378d2ae59f2d5af72ab509bbf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/40.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23749704$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23749704$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24043806$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pawlikowski, Jeff S.</creatorcontrib><creatorcontrib>McBryan, Tony</creatorcontrib><creatorcontrib>van Tuyn, John</creatorcontrib><creatorcontrib>Drotar, Mark E.</creatorcontrib><creatorcontrib>Hewitt, Rachael N.</creatorcontrib><creatorcontrib>Maier, Andrea B.</creatorcontrib><creatorcontrib>King, Ayala</creatorcontrib><creatorcontrib>Blyth, Karen</creatorcontrib><creatorcontrib>Wu, Hong</creatorcontrib><creatorcontrib>Adams, Peter D.</creatorcontrib><title>Wnt signaling potentiates nevogenesis</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Cellular senescence is a stable proliferation arrest associated with an altered secretory pathway (senescence-associated secretory phenotype). Cellular senescence is also a tumor suppressor mechanism, to which both proliferation arrest and senescence-associated secretory phenotype are thought to contribute. The melanocytes within benign human nevi are a paradigm for tumor-suppressive senescent cells in a premalignant neoplasm. Here a comparison of proliferating and senescent melanocytes and melanoma cell lines by RNA sequencing emphasizes the importance of senescence-associated proliferation arrest in suppression of transformation. Previous studies showed that activation of the Wnt signaling pathway can delay or bypass senescence. Consistent with this, we present evidence that repression of Wnt signaling contributes to melanocyte senescence in vitro. Surprisingly, Wnt signaling is active in many senescent human melanocytes in nevi, and this is linked to histological indicators of higher proliferative and malignant potential. In a mouse, activated Wnt signaling delays senescence-associated proliferation arrest to expand the population of senescent oncogene-expressing melanocytes. These results suggest that Wnt signaling can potentiate nevogenesis in vivo by delaying senescence. Further, we suggest that activated Wnt signaling in human nevi undermines senescence-mediated tumor suppression and enhances the probability of malignancy.</description><subject>Animals</subject><subject>Biological Sciences</subject><subject>Cell Line, Tumor</subject><subject>Cell lines</subject><subject>Cells</subject><subject>Cellular senescence</subject><subject>Cellular Senescence - physiology</subject><subject>Cyclins</subject><subject>DNA Primers - genetics</subject><subject>Genetic vectors</subject><subject>Genotype & phenotype</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Immunoblotting</subject><subject>Immunohistochemistry</subject><subject>Melanocytes</subject><subject>Melanocytes - cytology</subject><subject>Melanocytes - physiology</subject><subject>Melanoma</subject><subject>Melanoma - etiology</subject><subject>Mice</subject><subject>Microarray Analysis</subject><subject>Nevus</subject><subject>Nevus - metabolism</subject><subject>Nevus - physiopathology</subject><subject>Real-Time Polymerase Chain Reaction</subject><subject>Repression</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Rodents</subject><subject>Sequence Analysis, RNA</subject><subject>Skin</subject><subject>Tumors</subject><subject>Wnt Signaling Pathway - physiology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpdkU1rGzEQhkVpaBw3557aGkIgl41HGu1qdSkUky8I9NCYHIV2V7uVWUuutDbk30euHSfNSYd55tHMO4R8oXBJQeB05XS8pAjIJaUUPpARBUmzgkv4SEYATGQlZ_yYnMS4AACZl_CJHDMOHEsoRuT80Q2TaDune-u6ycoPxg1WDyZOnNn4zjgTbfxMjlrdR3O6f8dkfn31MLvN7n_d3M1-3mc1L8shq6FFEI2QDBtmTPpOYF7rgrWVoCbNCyiwkCjKhmmTy5Y1uW4F01UOsqpaHJMfO-9qXS1NU6dZgu7VKtilDk_Ka6v-rzj7R3V-o1BIKooyCS72guD_rk0c1NLG2vS9dsavo6KcI5aScprQs3fowq9DyuEfBTyXhcBETXdUHXyMwbSHYSio7QnU9gTq9QSp49vbHQ78S-YJmOyBbedBl3w8KYuUWkK-7pBFHHx4VaDgUiTNmHzf1Vvtle6CjWr-m8G2Oa1GKeIzzyieRQ</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Pawlikowski, Jeff S.</creator><creator>McBryan, Tony</creator><creator>van Tuyn, John</creator><creator>Drotar, Mark E.</creator><creator>Hewitt, Rachael N.</creator><creator>Maier, Andrea B.</creator><creator>King, Ayala</creator><creator>Blyth, Karen</creator><creator>Wu, Hong</creator><creator>Adams, Peter D.</creator><general>National Academy of Sciences</general><general>NATIONAL ACADEMY OF SCIENCES</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20131001</creationdate><title>Wnt signaling potentiates nevogenesis</title><author>Pawlikowski, Jeff S. ; McBryan, Tony ; van Tuyn, John ; Drotar, Mark E. ; Hewitt, Rachael N. ; Maier, Andrea B. ; King, Ayala ; Blyth, Karen ; Wu, Hong ; Adams, Peter D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-c0f307d7923d2ee009735ca62fb71e073037369378d2ae59f2d5af72ab509bbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Biological Sciences</topic><topic>Cell Line, Tumor</topic><topic>Cell lines</topic><topic>Cells</topic><topic>Cellular senescence</topic><topic>Cellular Senescence - physiology</topic><topic>Cyclins</topic><topic>DNA Primers - genetics</topic><topic>Genetic vectors</topic><topic>Genotype & phenotype</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Immunoblotting</topic><topic>Immunohistochemistry</topic><topic>Melanocytes</topic><topic>Melanocytes - cytology</topic><topic>Melanocytes - physiology</topic><topic>Melanoma</topic><topic>Melanoma - etiology</topic><topic>Mice</topic><topic>Microarray Analysis</topic><topic>Nevus</topic><topic>Nevus - metabolism</topic><topic>Nevus - physiopathology</topic><topic>Real-Time Polymerase Chain Reaction</topic><topic>Repression</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Rodents</topic><topic>Sequence Analysis, RNA</topic><topic>Skin</topic><topic>Tumors</topic><topic>Wnt Signaling Pathway - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pawlikowski, Jeff S.</creatorcontrib><creatorcontrib>McBryan, Tony</creatorcontrib><creatorcontrib>van Tuyn, John</creatorcontrib><creatorcontrib>Drotar, Mark E.</creatorcontrib><creatorcontrib>Hewitt, Rachael N.</creatorcontrib><creatorcontrib>Maier, Andrea B.</creatorcontrib><creatorcontrib>King, Ayala</creatorcontrib><creatorcontrib>Blyth, Karen</creatorcontrib><creatorcontrib>Wu, Hong</creatorcontrib><creatorcontrib>Adams, Peter D.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pawlikowski, Jeff S.</au><au>McBryan, Tony</au><au>van Tuyn, John</au><au>Drotar, Mark E.</au><au>Hewitt, Rachael N.</au><au>Maier, Andrea B.</au><au>King, Ayala</au><au>Blyth, Karen</au><au>Wu, Hong</au><au>Adams, Peter D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wnt signaling potentiates nevogenesis</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-10-01</date><risdate>2013</risdate><volume>110</volume><issue>40</issue><spage>16009</spage><epage>16014</epage><pages>16009-16014</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Cellular senescence is a stable proliferation arrest associated with an altered secretory pathway (senescence-associated secretory phenotype). Cellular senescence is also a tumor suppressor mechanism, to which both proliferation arrest and senescence-associated secretory phenotype are thought to contribute. The melanocytes within benign human nevi are a paradigm for tumor-suppressive senescent cells in a premalignant neoplasm. Here a comparison of proliferating and senescent melanocytes and melanoma cell lines by RNA sequencing emphasizes the importance of senescence-associated proliferation arrest in suppression of transformation. Previous studies showed that activation of the Wnt signaling pathway can delay or bypass senescence. Consistent with this, we present evidence that repression of Wnt signaling contributes to melanocyte senescence in vitro. Surprisingly, Wnt signaling is active in many senescent human melanocytes in nevi, and this is linked to histological indicators of higher proliferative and malignant potential. In a mouse, activated Wnt signaling delays senescence-associated proliferation arrest to expand the population of senescent oncogene-expressing melanocytes. These results suggest that Wnt signaling can potentiate nevogenesis in vivo by delaying senescence. Further, we suggest that activated Wnt signaling in human nevi undermines senescence-mediated tumor suppression and enhances the probability of malignancy.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>24043806</pmid><doi>10.1073/pnas.1303491110</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2013-10, Vol.110 (40), p.16009-16014 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_crossref_primary_10_1073_pnas_1303491110 |
source | PubMed (Medline); JSTOR Archival Journals and Primary Sources Collection |
subjects | Animals Biological Sciences Cell Line, Tumor Cell lines Cells Cellular senescence Cellular Senescence - physiology Cyclins DNA Primers - genetics Genetic vectors Genotype & phenotype HEK293 Cells Humans Immunoblotting Immunohistochemistry Melanocytes Melanocytes - cytology Melanocytes - physiology Melanoma Melanoma - etiology Mice Microarray Analysis Nevus Nevus - metabolism Nevus - physiopathology Real-Time Polymerase Chain Reaction Repression Ribonucleic acid RNA Rodents Sequence Analysis, RNA Skin Tumors Wnt Signaling Pathway - physiology |
title | Wnt signaling potentiates nevogenesis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T19%3A07%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wnt%20signaling%20potentiates%20nevogenesis&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Pawlikowski,%20Jeff%20S.&rft.date=2013-10-01&rft.volume=110&rft.issue=40&rft.spage=16009&rft.epage=16014&rft.pages=16009-16014&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1303491110&rft_dat=%3Cjstor_cross%3E23749704%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c488t-c0f307d7923d2ee009735ca62fb71e073037369378d2ae59f2d5af72ab509bbf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1440459673&rft_id=info:pmid/24043806&rft_jstor_id=23749704&rfr_iscdi=true |