Loading…
piggyBac transposase tools for genome engineering
The transposon piggyBac is being used increasingly for genetic studies. Here, we describe modified versions of piggyBac transposase that have potentially wide-ranging applications, such as reversible transgenesis and modified targeting of insertions. piggyBac is distinguished by its ability to excis...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2013-06, Vol.110 (25), p.E2279-E2287 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c470t-786c8b9eacf492e2c1e73364474d1e358da026f34f1d29aa5aab6be7c0398f093 |
---|---|
cites | cdi_FETCH-LOGICAL-c470t-786c8b9eacf492e2c1e73364474d1e358da026f34f1d29aa5aab6be7c0398f093 |
container_end_page | E2287 |
container_issue | 25 |
container_start_page | E2279 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 110 |
creator | Li, Xianghong Burnight, Erin R Cooney, Ashley L Malani, Nirav Brady, Troy Sander, Jeffry D Staber, Janice Wheelan, Sarah J Joung, J Keith McCray, Jr, Paul B Bushman, Frederic D Sinn, Patrick L Craig, Nancy L |
description | The transposon piggyBac is being used increasingly for genetic studies. Here, we describe modified versions of piggyBac transposase that have potentially wide-ranging applications, such as reversible transgenesis and modified targeting of insertions. piggyBac is distinguished by its ability to excise precisely, restoring the donor site to its pretransposon state. This characteristic makes piggyBac useful for reversible transgenesis, a potentially valuable feature when generating induced pluripotent stem cells without permanent alterations to genomic sequence. To avoid further genome modification following piggyBac excision by reintegration, we generated an excision competent/integration defective (Exc ⁺Int ⁻) transposase. Our findings also suggest the position of a target DNA–transposase interaction. Another goal of genome engineering is to develop reagents that can guide transgenes to preferred genomic regions. Others have shown that piggyBac transposase can be active when fused to a heterologous DNA-binding domain. An Exc ⁺Int ⁻ transposase, the intrinsic targeting of which is defective, might also be a useful intermediate in generating a transposase whose integration activity could be rescued and redirected by fusion to a site-specific DNA-binding domain. We show that fusion to two designed zinc finger proteins rescued the Int ⁻ phenotype. Successful guided transgene integration into genomic DNA would have broad applications to gene therapy and molecular genetics. Thus, an Exc ⁺Int ⁻ transposase is a potentially useful reagent for genome engineering and provides insight into the mechanism of transposase–target DNA interaction. |
doi_str_mv | 10.1073/pnas.1305987110 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_1305987110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3002051961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-786c8b9eacf492e2c1e73364474d1e358da026f34f1d29aa5aab6be7c0398f093</originalsourceid><addsrcrecordid>eNpVkD1PwzAQhi0EoqUws0Ek5tDzR-x4QYKqfEiVGKCz5SROSNXawW6R-u9x1FJguuGee-_Ri9AlhlsMgo47q8MtppDJXGAMR2iIQeKUMwnHaAhARJozwgboLIQFAMgsh1M0IFQQSjM8RLhrm2b7oMtk7bUNnQs6mGTt3DIktfNJY6xbmcTYprXG-NY25-ik1stgLvZzhOaP0_fJczp7fXqZ3M_SkglYpyLnZV5Io8uaSWJIiY2glDMmWIUNzfJKA-E1ZTWuiNQ607rghRElUJnXIOkI3e1yu02xMlVpbDRcqs63K-23yulW_d_Y9kM17ktRLiHnfcDNPsC7z40Ja7VwG2-js8JUAOVRMYvUeEeV3oXgTX34gEH1Hau-Y_Xbcby4-it24H9KjUCyB_rLQ1zMI5maEiJ6t-sdUmundOPboOZvBDAHiG4YCP0G5AaL9Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1370367865</pqid></control><display><type>article</type><title>piggyBac transposase tools for genome engineering</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Li, Xianghong ; Burnight, Erin R ; Cooney, Ashley L ; Malani, Nirav ; Brady, Troy ; Sander, Jeffry D ; Staber, Janice ; Wheelan, Sarah J ; Joung, J Keith ; McCray, Jr, Paul B ; Bushman, Frederic D ; Sinn, Patrick L ; Craig, Nancy L</creator><creatorcontrib>Li, Xianghong ; Burnight, Erin R ; Cooney, Ashley L ; Malani, Nirav ; Brady, Troy ; Sander, Jeffry D ; Staber, Janice ; Wheelan, Sarah J ; Joung, J Keith ; McCray, Jr, Paul B ; Bushman, Frederic D ; Sinn, Patrick L ; Craig, Nancy L</creatorcontrib><description>The transposon piggyBac is being used increasingly for genetic studies. Here, we describe modified versions of piggyBac transposase that have potentially wide-ranging applications, such as reversible transgenesis and modified targeting of insertions. piggyBac is distinguished by its ability to excise precisely, restoring the donor site to its pretransposon state. This characteristic makes piggyBac useful for reversible transgenesis, a potentially valuable feature when generating induced pluripotent stem cells without permanent alterations to genomic sequence. To avoid further genome modification following piggyBac excision by reintegration, we generated an excision competent/integration defective (Exc ⁺Int ⁻) transposase. Our findings also suggest the position of a target DNA–transposase interaction. Another goal of genome engineering is to develop reagents that can guide transgenes to preferred genomic regions. Others have shown that piggyBac transposase can be active when fused to a heterologous DNA-binding domain. An Exc ⁺Int ⁻ transposase, the intrinsic targeting of which is defective, might also be a useful intermediate in generating a transposase whose integration activity could be rescued and redirected by fusion to a site-specific DNA-binding domain. We show that fusion to two designed zinc finger proteins rescued the Int ⁻ phenotype. Successful guided transgene integration into genomic DNA would have broad applications to gene therapy and molecular genetics. Thus, an Exc ⁺Int ⁻ transposase is a potentially useful reagent for genome engineering and provides insight into the mechanism of transposase–target DNA interaction.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1305987110</identifier><identifier>PMID: 23723351</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino Acid Sequence ; Animals ; Binding sites ; Biological Sciences ; Deoxyribonucleic acid ; DNA ; DNA Transposable Elements - genetics ; Gene Transfer Techniques ; Genetic engineering ; Genetic Engineering - methods ; Genome, Human - genetics ; Genotype & phenotype ; HEK293 Cells ; HeLa Cells ; Humans ; Mammals ; Molecular Sequence Data ; Mutagenesis, Insertional - methods ; Nerve Tissue Proteins - genetics ; Pluripotent Stem Cells - cytology ; Pluripotent Stem Cells - physiology ; PNAS Plus ; Proteins ; Saccharomyces cerevisiae - genetics ; Stem cells ; Zinc Fingers - genetics</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-06, Vol.110 (25), p.E2279-E2287</ispartof><rights>Copyright National Academy of Sciences Jun 18, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-786c8b9eacf492e2c1e73364474d1e358da026f34f1d29aa5aab6be7c0398f093</citedby><cites>FETCH-LOGICAL-c470t-786c8b9eacf492e2c1e73364474d1e358da026f34f1d29aa5aab6be7c0398f093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/25.cover.gif</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3690869/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3690869/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23723351$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Xianghong</creatorcontrib><creatorcontrib>Burnight, Erin R</creatorcontrib><creatorcontrib>Cooney, Ashley L</creatorcontrib><creatorcontrib>Malani, Nirav</creatorcontrib><creatorcontrib>Brady, Troy</creatorcontrib><creatorcontrib>Sander, Jeffry D</creatorcontrib><creatorcontrib>Staber, Janice</creatorcontrib><creatorcontrib>Wheelan, Sarah J</creatorcontrib><creatorcontrib>Joung, J Keith</creatorcontrib><creatorcontrib>McCray, Jr, Paul B</creatorcontrib><creatorcontrib>Bushman, Frederic D</creatorcontrib><creatorcontrib>Sinn, Patrick L</creatorcontrib><creatorcontrib>Craig, Nancy L</creatorcontrib><title>piggyBac transposase tools for genome engineering</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The transposon piggyBac is being used increasingly for genetic studies. Here, we describe modified versions of piggyBac transposase that have potentially wide-ranging applications, such as reversible transgenesis and modified targeting of insertions. piggyBac is distinguished by its ability to excise precisely, restoring the donor site to its pretransposon state. This characteristic makes piggyBac useful for reversible transgenesis, a potentially valuable feature when generating induced pluripotent stem cells without permanent alterations to genomic sequence. To avoid further genome modification following piggyBac excision by reintegration, we generated an excision competent/integration defective (Exc ⁺Int ⁻) transposase. Our findings also suggest the position of a target DNA–transposase interaction. Another goal of genome engineering is to develop reagents that can guide transgenes to preferred genomic regions. Others have shown that piggyBac transposase can be active when fused to a heterologous DNA-binding domain. An Exc ⁺Int ⁻ transposase, the intrinsic targeting of which is defective, might also be a useful intermediate in generating a transposase whose integration activity could be rescued and redirected by fusion to a site-specific DNA-binding domain. We show that fusion to two designed zinc finger proteins rescued the Int ⁻ phenotype. Successful guided transgene integration into genomic DNA would have broad applications to gene therapy and molecular genetics. Thus, an Exc ⁺Int ⁻ transposase is a potentially useful reagent for genome engineering and provides insight into the mechanism of transposase–target DNA interaction.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Binding sites</subject><subject>Biological Sciences</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Transposable Elements - genetics</subject><subject>Gene Transfer Techniques</subject><subject>Genetic engineering</subject><subject>Genetic Engineering - methods</subject><subject>Genome, Human - genetics</subject><subject>Genotype & phenotype</subject><subject>HEK293 Cells</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Mammals</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis, Insertional - methods</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Pluripotent Stem Cells - cytology</subject><subject>Pluripotent Stem Cells - physiology</subject><subject>PNAS Plus</subject><subject>Proteins</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Stem cells</subject><subject>Zinc Fingers - genetics</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpVkD1PwzAQhi0EoqUws0Ek5tDzR-x4QYKqfEiVGKCz5SROSNXawW6R-u9x1FJguuGee-_Ri9AlhlsMgo47q8MtppDJXGAMR2iIQeKUMwnHaAhARJozwgboLIQFAMgsh1M0IFQQSjM8RLhrm2b7oMtk7bUNnQs6mGTt3DIktfNJY6xbmcTYprXG-NY25-ik1stgLvZzhOaP0_fJczp7fXqZ3M_SkglYpyLnZV5Io8uaSWJIiY2glDMmWIUNzfJKA-E1ZTWuiNQ607rghRElUJnXIOkI3e1yu02xMlVpbDRcqs63K-23yulW_d_Y9kM17ktRLiHnfcDNPsC7z40Ja7VwG2-js8JUAOVRMYvUeEeV3oXgTX34gEH1Hau-Y_Xbcby4-it24H9KjUCyB_rLQ1zMI5maEiJ6t-sdUmundOPboOZvBDAHiG4YCP0G5AaL9Q</recordid><startdate>20130618</startdate><enddate>20130618</enddate><creator>Li, Xianghong</creator><creator>Burnight, Erin R</creator><creator>Cooney, Ashley L</creator><creator>Malani, Nirav</creator><creator>Brady, Troy</creator><creator>Sander, Jeffry D</creator><creator>Staber, Janice</creator><creator>Wheelan, Sarah J</creator><creator>Joung, J Keith</creator><creator>McCray, Jr, Paul B</creator><creator>Bushman, Frederic D</creator><creator>Sinn, Patrick L</creator><creator>Craig, Nancy L</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20130618</creationdate><title>piggyBac transposase tools for genome engineering</title><author>Li, Xianghong ; Burnight, Erin R ; Cooney, Ashley L ; Malani, Nirav ; Brady, Troy ; Sander, Jeffry D ; Staber, Janice ; Wheelan, Sarah J ; Joung, J Keith ; McCray, Jr, Paul B ; Bushman, Frederic D ; Sinn, Patrick L ; Craig, Nancy L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-786c8b9eacf492e2c1e73364474d1e358da026f34f1d29aa5aab6be7c0398f093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Binding sites</topic><topic>Biological Sciences</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Transposable Elements - genetics</topic><topic>Gene Transfer Techniques</topic><topic>Genetic engineering</topic><topic>Genetic Engineering - methods</topic><topic>Genome, Human - genetics</topic><topic>Genotype & phenotype</topic><topic>HEK293 Cells</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Mammals</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis, Insertional - methods</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Pluripotent Stem Cells - cytology</topic><topic>Pluripotent Stem Cells - physiology</topic><topic>PNAS Plus</topic><topic>Proteins</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Stem cells</topic><topic>Zinc Fingers - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xianghong</creatorcontrib><creatorcontrib>Burnight, Erin R</creatorcontrib><creatorcontrib>Cooney, Ashley L</creatorcontrib><creatorcontrib>Malani, Nirav</creatorcontrib><creatorcontrib>Brady, Troy</creatorcontrib><creatorcontrib>Sander, Jeffry D</creatorcontrib><creatorcontrib>Staber, Janice</creatorcontrib><creatorcontrib>Wheelan, Sarah J</creatorcontrib><creatorcontrib>Joung, J Keith</creatorcontrib><creatorcontrib>McCray, Jr, Paul B</creatorcontrib><creatorcontrib>Bushman, Frederic D</creatorcontrib><creatorcontrib>Sinn, Patrick L</creatorcontrib><creatorcontrib>Craig, Nancy L</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xianghong</au><au>Burnight, Erin R</au><au>Cooney, Ashley L</au><au>Malani, Nirav</au><au>Brady, Troy</au><au>Sander, Jeffry D</au><au>Staber, Janice</au><au>Wheelan, Sarah J</au><au>Joung, J Keith</au><au>McCray, Jr, Paul B</au><au>Bushman, Frederic D</au><au>Sinn, Patrick L</au><au>Craig, Nancy L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>piggyBac transposase tools for genome engineering</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-06-18</date><risdate>2013</risdate><volume>110</volume><issue>25</issue><spage>E2279</spage><epage>E2287</epage><pages>E2279-E2287</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The transposon piggyBac is being used increasingly for genetic studies. Here, we describe modified versions of piggyBac transposase that have potentially wide-ranging applications, such as reversible transgenesis and modified targeting of insertions. piggyBac is distinguished by its ability to excise precisely, restoring the donor site to its pretransposon state. This characteristic makes piggyBac useful for reversible transgenesis, a potentially valuable feature when generating induced pluripotent stem cells without permanent alterations to genomic sequence. To avoid further genome modification following piggyBac excision by reintegration, we generated an excision competent/integration defective (Exc ⁺Int ⁻) transposase. Our findings also suggest the position of a target DNA–transposase interaction. Another goal of genome engineering is to develop reagents that can guide transgenes to preferred genomic regions. Others have shown that piggyBac transposase can be active when fused to a heterologous DNA-binding domain. An Exc ⁺Int ⁻ transposase, the intrinsic targeting of which is defective, might also be a useful intermediate in generating a transposase whose integration activity could be rescued and redirected by fusion to a site-specific DNA-binding domain. We show that fusion to two designed zinc finger proteins rescued the Int ⁻ phenotype. Successful guided transgene integration into genomic DNA would have broad applications to gene therapy and molecular genetics. Thus, an Exc ⁺Int ⁻ transposase is a potentially useful reagent for genome engineering and provides insight into the mechanism of transposase–target DNA interaction.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23723351</pmid><doi>10.1073/pnas.1305987110</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2013-06, Vol.110 (25), p.E2279-E2287 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_crossref_primary_10_1073_pnas_1305987110 |
source | JSTOR Archival Journals and Primary Sources Collection; PubMed Central |
subjects | Amino Acid Sequence Animals Binding sites Biological Sciences Deoxyribonucleic acid DNA DNA Transposable Elements - genetics Gene Transfer Techniques Genetic engineering Genetic Engineering - methods Genome, Human - genetics Genotype & phenotype HEK293 Cells HeLa Cells Humans Mammals Molecular Sequence Data Mutagenesis, Insertional - methods Nerve Tissue Proteins - genetics Pluripotent Stem Cells - cytology Pluripotent Stem Cells - physiology PNAS Plus Proteins Saccharomyces cerevisiae - genetics Stem cells Zinc Fingers - genetics |
title | piggyBac transposase tools for genome engineering |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A43%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=piggyBac%20transposase%20tools%20for%20genome%20engineering&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Li,%20Xianghong&rft.date=2013-06-18&rft.volume=110&rft.issue=25&rft.spage=E2279&rft.epage=E2287&rft.pages=E2279-E2287&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1305987110&rft_dat=%3Cproquest_cross%3E3002051961%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c470t-786c8b9eacf492e2c1e73364474d1e358da026f34f1d29aa5aab6be7c0398f093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1370367865&rft_id=info:pmid/23723351&rfr_iscdi=true |