Loading…

piggyBac transposase tools for genome engineering

The transposon piggyBac is being used increasingly for genetic studies. Here, we describe modified versions of piggyBac transposase that have potentially wide-ranging applications, such as reversible transgenesis and modified targeting of insertions. piggyBac is distinguished by its ability to excis...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2013-06, Vol.110 (25), p.E2279-E2287
Main Authors: Li, Xianghong, Burnight, Erin R, Cooney, Ashley L, Malani, Nirav, Brady, Troy, Sander, Jeffry D, Staber, Janice, Wheelan, Sarah J, Joung, J Keith, McCray, Jr, Paul B, Bushman, Frederic D, Sinn, Patrick L, Craig, Nancy L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c470t-786c8b9eacf492e2c1e73364474d1e358da026f34f1d29aa5aab6be7c0398f093
cites cdi_FETCH-LOGICAL-c470t-786c8b9eacf492e2c1e73364474d1e358da026f34f1d29aa5aab6be7c0398f093
container_end_page E2287
container_issue 25
container_start_page E2279
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 110
creator Li, Xianghong
Burnight, Erin R
Cooney, Ashley L
Malani, Nirav
Brady, Troy
Sander, Jeffry D
Staber, Janice
Wheelan, Sarah J
Joung, J Keith
McCray, Jr, Paul B
Bushman, Frederic D
Sinn, Patrick L
Craig, Nancy L
description The transposon piggyBac is being used increasingly for genetic studies. Here, we describe modified versions of piggyBac transposase that have potentially wide-ranging applications, such as reversible transgenesis and modified targeting of insertions. piggyBac is distinguished by its ability to excise precisely, restoring the donor site to its pretransposon state. This characteristic makes piggyBac useful for reversible transgenesis, a potentially valuable feature when generating induced pluripotent stem cells without permanent alterations to genomic sequence. To avoid further genome modification following piggyBac excision by reintegration, we generated an excision competent/integration defective (Exc ⁺Int ⁻) transposase. Our findings also suggest the position of a target DNA–transposase interaction. Another goal of genome engineering is to develop reagents that can guide transgenes to preferred genomic regions. Others have shown that piggyBac transposase can be active when fused to a heterologous DNA-binding domain. An Exc ⁺Int ⁻ transposase, the intrinsic targeting of which is defective, might also be a useful intermediate in generating a transposase whose integration activity could be rescued and redirected by fusion to a site-specific DNA-binding domain. We show that fusion to two designed zinc finger proteins rescued the Int ⁻ phenotype. Successful guided transgene integration into genomic DNA would have broad applications to gene therapy and molecular genetics. Thus, an Exc ⁺Int ⁻ transposase is a potentially useful reagent for genome engineering and provides insight into the mechanism of transposase–target DNA interaction.
doi_str_mv 10.1073/pnas.1305987110
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_1305987110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3002051961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-786c8b9eacf492e2c1e73364474d1e358da026f34f1d29aa5aab6be7c0398f093</originalsourceid><addsrcrecordid>eNpVkD1PwzAQhi0EoqUws0Ek5tDzR-x4QYKqfEiVGKCz5SROSNXawW6R-u9x1FJguuGee-_Ri9AlhlsMgo47q8MtppDJXGAMR2iIQeKUMwnHaAhARJozwgboLIQFAMgsh1M0IFQQSjM8RLhrm2b7oMtk7bUNnQs6mGTt3DIktfNJY6xbmcTYprXG-NY25-ik1stgLvZzhOaP0_fJczp7fXqZ3M_SkglYpyLnZV5Io8uaSWJIiY2glDMmWIUNzfJKA-E1ZTWuiNQ607rghRElUJnXIOkI3e1yu02xMlVpbDRcqs63K-23yulW_d_Y9kM17ktRLiHnfcDNPsC7z40Ja7VwG2-js8JUAOVRMYvUeEeV3oXgTX34gEH1Hau-Y_Xbcby4-it24H9KjUCyB_rLQ1zMI5maEiJ6t-sdUmundOPboOZvBDAHiG4YCP0G5AaL9Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1370367865</pqid></control><display><type>article</type><title>piggyBac transposase tools for genome engineering</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Li, Xianghong ; Burnight, Erin R ; Cooney, Ashley L ; Malani, Nirav ; Brady, Troy ; Sander, Jeffry D ; Staber, Janice ; Wheelan, Sarah J ; Joung, J Keith ; McCray, Jr, Paul B ; Bushman, Frederic D ; Sinn, Patrick L ; Craig, Nancy L</creator><creatorcontrib>Li, Xianghong ; Burnight, Erin R ; Cooney, Ashley L ; Malani, Nirav ; Brady, Troy ; Sander, Jeffry D ; Staber, Janice ; Wheelan, Sarah J ; Joung, J Keith ; McCray, Jr, Paul B ; Bushman, Frederic D ; Sinn, Patrick L ; Craig, Nancy L</creatorcontrib><description>The transposon piggyBac is being used increasingly for genetic studies. Here, we describe modified versions of piggyBac transposase that have potentially wide-ranging applications, such as reversible transgenesis and modified targeting of insertions. piggyBac is distinguished by its ability to excise precisely, restoring the donor site to its pretransposon state. This characteristic makes piggyBac useful for reversible transgenesis, a potentially valuable feature when generating induced pluripotent stem cells without permanent alterations to genomic sequence. To avoid further genome modification following piggyBac excision by reintegration, we generated an excision competent/integration defective (Exc ⁺Int ⁻) transposase. Our findings also suggest the position of a target DNA–transposase interaction. Another goal of genome engineering is to develop reagents that can guide transgenes to preferred genomic regions. Others have shown that piggyBac transposase can be active when fused to a heterologous DNA-binding domain. An Exc ⁺Int ⁻ transposase, the intrinsic targeting of which is defective, might also be a useful intermediate in generating a transposase whose integration activity could be rescued and redirected by fusion to a site-specific DNA-binding domain. We show that fusion to two designed zinc finger proteins rescued the Int ⁻ phenotype. Successful guided transgene integration into genomic DNA would have broad applications to gene therapy and molecular genetics. Thus, an Exc ⁺Int ⁻ transposase is a potentially useful reagent for genome engineering and provides insight into the mechanism of transposase–target DNA interaction.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1305987110</identifier><identifier>PMID: 23723351</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino Acid Sequence ; Animals ; Binding sites ; Biological Sciences ; Deoxyribonucleic acid ; DNA ; DNA Transposable Elements - genetics ; Gene Transfer Techniques ; Genetic engineering ; Genetic Engineering - methods ; Genome, Human - genetics ; Genotype &amp; phenotype ; HEK293 Cells ; HeLa Cells ; Humans ; Mammals ; Molecular Sequence Data ; Mutagenesis, Insertional - methods ; Nerve Tissue Proteins - genetics ; Pluripotent Stem Cells - cytology ; Pluripotent Stem Cells - physiology ; PNAS Plus ; Proteins ; Saccharomyces cerevisiae - genetics ; Stem cells ; Zinc Fingers - genetics</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-06, Vol.110 (25), p.E2279-E2287</ispartof><rights>Copyright National Academy of Sciences Jun 18, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-786c8b9eacf492e2c1e73364474d1e358da026f34f1d29aa5aab6be7c0398f093</citedby><cites>FETCH-LOGICAL-c470t-786c8b9eacf492e2c1e73364474d1e358da026f34f1d29aa5aab6be7c0398f093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/25.cover.gif</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3690869/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3690869/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23723351$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Xianghong</creatorcontrib><creatorcontrib>Burnight, Erin R</creatorcontrib><creatorcontrib>Cooney, Ashley L</creatorcontrib><creatorcontrib>Malani, Nirav</creatorcontrib><creatorcontrib>Brady, Troy</creatorcontrib><creatorcontrib>Sander, Jeffry D</creatorcontrib><creatorcontrib>Staber, Janice</creatorcontrib><creatorcontrib>Wheelan, Sarah J</creatorcontrib><creatorcontrib>Joung, J Keith</creatorcontrib><creatorcontrib>McCray, Jr, Paul B</creatorcontrib><creatorcontrib>Bushman, Frederic D</creatorcontrib><creatorcontrib>Sinn, Patrick L</creatorcontrib><creatorcontrib>Craig, Nancy L</creatorcontrib><title>piggyBac transposase tools for genome engineering</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The transposon piggyBac is being used increasingly for genetic studies. Here, we describe modified versions of piggyBac transposase that have potentially wide-ranging applications, such as reversible transgenesis and modified targeting of insertions. piggyBac is distinguished by its ability to excise precisely, restoring the donor site to its pretransposon state. This characteristic makes piggyBac useful for reversible transgenesis, a potentially valuable feature when generating induced pluripotent stem cells without permanent alterations to genomic sequence. To avoid further genome modification following piggyBac excision by reintegration, we generated an excision competent/integration defective (Exc ⁺Int ⁻) transposase. Our findings also suggest the position of a target DNA–transposase interaction. Another goal of genome engineering is to develop reagents that can guide transgenes to preferred genomic regions. Others have shown that piggyBac transposase can be active when fused to a heterologous DNA-binding domain. An Exc ⁺Int ⁻ transposase, the intrinsic targeting of which is defective, might also be a useful intermediate in generating a transposase whose integration activity could be rescued and redirected by fusion to a site-specific DNA-binding domain. We show that fusion to two designed zinc finger proteins rescued the Int ⁻ phenotype. Successful guided transgene integration into genomic DNA would have broad applications to gene therapy and molecular genetics. Thus, an Exc ⁺Int ⁻ transposase is a potentially useful reagent for genome engineering and provides insight into the mechanism of transposase–target DNA interaction.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Binding sites</subject><subject>Biological Sciences</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Transposable Elements - genetics</subject><subject>Gene Transfer Techniques</subject><subject>Genetic engineering</subject><subject>Genetic Engineering - methods</subject><subject>Genome, Human - genetics</subject><subject>Genotype &amp; phenotype</subject><subject>HEK293 Cells</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Mammals</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis, Insertional - methods</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Pluripotent Stem Cells - cytology</subject><subject>Pluripotent Stem Cells - physiology</subject><subject>PNAS Plus</subject><subject>Proteins</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Stem cells</subject><subject>Zinc Fingers - genetics</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpVkD1PwzAQhi0EoqUws0Ek5tDzR-x4QYKqfEiVGKCz5SROSNXawW6R-u9x1FJguuGee-_Ri9AlhlsMgo47q8MtppDJXGAMR2iIQeKUMwnHaAhARJozwgboLIQFAMgsh1M0IFQQSjM8RLhrm2b7oMtk7bUNnQs6mGTt3DIktfNJY6xbmcTYprXG-NY25-ik1stgLvZzhOaP0_fJczp7fXqZ3M_SkglYpyLnZV5Io8uaSWJIiY2glDMmWIUNzfJKA-E1ZTWuiNQ607rghRElUJnXIOkI3e1yu02xMlVpbDRcqs63K-23yulW_d_Y9kM17ktRLiHnfcDNPsC7z40Ja7VwG2-js8JUAOVRMYvUeEeV3oXgTX34gEH1Hau-Y_Xbcby4-it24H9KjUCyB_rLQ1zMI5maEiJ6t-sdUmundOPboOZvBDAHiG4YCP0G5AaL9Q</recordid><startdate>20130618</startdate><enddate>20130618</enddate><creator>Li, Xianghong</creator><creator>Burnight, Erin R</creator><creator>Cooney, Ashley L</creator><creator>Malani, Nirav</creator><creator>Brady, Troy</creator><creator>Sander, Jeffry D</creator><creator>Staber, Janice</creator><creator>Wheelan, Sarah J</creator><creator>Joung, J Keith</creator><creator>McCray, Jr, Paul B</creator><creator>Bushman, Frederic D</creator><creator>Sinn, Patrick L</creator><creator>Craig, Nancy L</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20130618</creationdate><title>piggyBac transposase tools for genome engineering</title><author>Li, Xianghong ; Burnight, Erin R ; Cooney, Ashley L ; Malani, Nirav ; Brady, Troy ; Sander, Jeffry D ; Staber, Janice ; Wheelan, Sarah J ; Joung, J Keith ; McCray, Jr, Paul B ; Bushman, Frederic D ; Sinn, Patrick L ; Craig, Nancy L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-786c8b9eacf492e2c1e73364474d1e358da026f34f1d29aa5aab6be7c0398f093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Binding sites</topic><topic>Biological Sciences</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Transposable Elements - genetics</topic><topic>Gene Transfer Techniques</topic><topic>Genetic engineering</topic><topic>Genetic Engineering - methods</topic><topic>Genome, Human - genetics</topic><topic>Genotype &amp; phenotype</topic><topic>HEK293 Cells</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Mammals</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis, Insertional - methods</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Pluripotent Stem Cells - cytology</topic><topic>Pluripotent Stem Cells - physiology</topic><topic>PNAS Plus</topic><topic>Proteins</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Stem cells</topic><topic>Zinc Fingers - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xianghong</creatorcontrib><creatorcontrib>Burnight, Erin R</creatorcontrib><creatorcontrib>Cooney, Ashley L</creatorcontrib><creatorcontrib>Malani, Nirav</creatorcontrib><creatorcontrib>Brady, Troy</creatorcontrib><creatorcontrib>Sander, Jeffry D</creatorcontrib><creatorcontrib>Staber, Janice</creatorcontrib><creatorcontrib>Wheelan, Sarah J</creatorcontrib><creatorcontrib>Joung, J Keith</creatorcontrib><creatorcontrib>McCray, Jr, Paul B</creatorcontrib><creatorcontrib>Bushman, Frederic D</creatorcontrib><creatorcontrib>Sinn, Patrick L</creatorcontrib><creatorcontrib>Craig, Nancy L</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xianghong</au><au>Burnight, Erin R</au><au>Cooney, Ashley L</au><au>Malani, Nirav</au><au>Brady, Troy</au><au>Sander, Jeffry D</au><au>Staber, Janice</au><au>Wheelan, Sarah J</au><au>Joung, J Keith</au><au>McCray, Jr, Paul B</au><au>Bushman, Frederic D</au><au>Sinn, Patrick L</au><au>Craig, Nancy L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>piggyBac transposase tools for genome engineering</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-06-18</date><risdate>2013</risdate><volume>110</volume><issue>25</issue><spage>E2279</spage><epage>E2287</epage><pages>E2279-E2287</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The transposon piggyBac is being used increasingly for genetic studies. Here, we describe modified versions of piggyBac transposase that have potentially wide-ranging applications, such as reversible transgenesis and modified targeting of insertions. piggyBac is distinguished by its ability to excise precisely, restoring the donor site to its pretransposon state. This characteristic makes piggyBac useful for reversible transgenesis, a potentially valuable feature when generating induced pluripotent stem cells without permanent alterations to genomic sequence. To avoid further genome modification following piggyBac excision by reintegration, we generated an excision competent/integration defective (Exc ⁺Int ⁻) transposase. Our findings also suggest the position of a target DNA–transposase interaction. Another goal of genome engineering is to develop reagents that can guide transgenes to preferred genomic regions. Others have shown that piggyBac transposase can be active when fused to a heterologous DNA-binding domain. An Exc ⁺Int ⁻ transposase, the intrinsic targeting of which is defective, might also be a useful intermediate in generating a transposase whose integration activity could be rescued and redirected by fusion to a site-specific DNA-binding domain. We show that fusion to two designed zinc finger proteins rescued the Int ⁻ phenotype. Successful guided transgene integration into genomic DNA would have broad applications to gene therapy and molecular genetics. Thus, an Exc ⁺Int ⁻ transposase is a potentially useful reagent for genome engineering and provides insight into the mechanism of transposase–target DNA interaction.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23723351</pmid><doi>10.1073/pnas.1305987110</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2013-06, Vol.110 (25), p.E2279-E2287
issn 0027-8424
1091-6490
language eng
recordid cdi_crossref_primary_10_1073_pnas_1305987110
source JSTOR Archival Journals and Primary Sources Collection; PubMed Central
subjects Amino Acid Sequence
Animals
Binding sites
Biological Sciences
Deoxyribonucleic acid
DNA
DNA Transposable Elements - genetics
Gene Transfer Techniques
Genetic engineering
Genetic Engineering - methods
Genome, Human - genetics
Genotype & phenotype
HEK293 Cells
HeLa Cells
Humans
Mammals
Molecular Sequence Data
Mutagenesis, Insertional - methods
Nerve Tissue Proteins - genetics
Pluripotent Stem Cells - cytology
Pluripotent Stem Cells - physiology
PNAS Plus
Proteins
Saccharomyces cerevisiae - genetics
Stem cells
Zinc Fingers - genetics
title piggyBac transposase tools for genome engineering
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A43%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=piggyBac%20transposase%20tools%20for%20genome%20engineering&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Li,%20Xianghong&rft.date=2013-06-18&rft.volume=110&rft.issue=25&rft.spage=E2279&rft.epage=E2287&rft.pages=E2279-E2287&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1305987110&rft_dat=%3Cproquest_cross%3E3002051961%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c470t-786c8b9eacf492e2c1e73364474d1e358da026f34f1d29aa5aab6be7c0398f093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1370367865&rft_id=info:pmid/23723351&rfr_iscdi=true