Loading…

Essential role of poly(ADP-ribosyl)ation in cocaine action

Many of the long-term effects of cocaine on the brain's reward circuitry have been shown to be mediated by alterations in gene expression. Several chromatin modifications, including histone acetylation and methylation, have been implicated in this regulation, but the effect of other histone mod...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2014-02, Vol.111 (5), p.2005-2010
Main Authors: Scobie, Kimberly N., Damez-Werno, Diane, Sun, HaoSheng, Shao, NingYi, Gancarz, Amy, Panganiban, Clarisse H., Dias, Caroline, Koo, JaWook, Caiafa, Paola, Kaufman, Lewis, Neve, Rachael L., Dietz, David M., Li Shen, Nestler, Eric J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c532t-7f559c4b5f5f28c86ab72b6fa86b50353c445361a7cc52145e614bda50cff13
cites cdi_FETCH-LOGICAL-c532t-7f559c4b5f5f28c86ab72b6fa86b50353c445361a7cc52145e614bda50cff13
container_end_page 2010
container_issue 5
container_start_page 2005
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 111
creator Scobie, Kimberly N.
Damez-Werno, Diane
Sun, HaoSheng
Shao, NingYi
Gancarz, Amy
Panganiban, Clarisse H.
Dias, Caroline
Koo, JaWook
Caiafa, Paola
Kaufman, Lewis
Neve, Rachael L.
Dietz, David M.
Li Shen
Nestler, Eric J.
description Many of the long-term effects of cocaine on the brain's reward circuitry have been shown to be mediated by alterations in gene expression. Several chromatin modifications, including histone acetylation and methylation, have been implicated in this regulation, but the effect of other histone modifications remains poorly understood. Poly(ADP-ribose) polymerase-1 (PARP-1), a ubiquitous and abundant nuclear protein, catalyzes the synthesis of a negatively charged polymer called poly(ADP-ribose) or PAR on histones and other substrate proteins and forms transcriptional regulatory complexes with several other chromatin proteins. Here, we identify an essential role for PARP-1 in cocaine-induced molecular, neural, and behavioral plasticity. Repeated cocaine administration, including self-administration, increased global levels of PARP-1 and its mark PAR in mouse nucleus accumbens (NAc), a key brain reward region. Using PARP-1 inhibitors and viral-mediated gene transfer, we established that PARP-1 induction in NAc mediates enhanced behavioral responses to cocaine, including increased self-administration of the drug. Using chromatin immunoprecipitation sequencing, we demonstrated a global, genome-wide enrichment of PARP-1 in NAc of cocaine-exposed mice and identified several PARP-1 target genes that could contribute to the lasting effects of cocaine. Specifically, we identified sidekick-1—important for synaptic connections during development—as a critical PARP-1 target gene involved in cocaine's behavioral effects as well as in its ability to induce dendritic spines on NAc neurons. These findings establish the involvement of PARP-1 and PARylation in the long-term actions of cocaine.
doi_str_mv 10.1073/pnas.1319703111
format article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_1319703111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23766933</jstor_id><sourcerecordid>23766933</sourcerecordid><originalsourceid>FETCH-LOGICAL-c532t-7f559c4b5f5f28c86ab72b6fa86b50353c445361a7cc52145e614bda50cff13</originalsourceid><addsrcrecordid>eNpVkM9LwzAUx4Mobk7PnpSCFz10e69JmsaDMOb8AQMFvYc0a7SjNjPphP33tmxOPQVevu_zvnwIOUUYIgg6WtY6DJGiFEARcY_0ESTGKZOwT_oAiYgzlrAeOQphAQCSZ3BIegljTEqQfXI9DaGom1JXkXdVETkbLV21vhzfPse-zF1YV1e6KV0dlXVknNFlXUTadJNjcmB1FYqT7TsgL3fT18lDPHu6f5yMZ7HhNGliYTmXhuXccptkJkt1LpI8tTpLcw6UU8MYpylqYQxPkPEiRZbPNQdjLdIBudlQl6v8o5ibtqzXlVr68kP7tXK6VP9_6vJdvbkvRSVmQsgWcLEFePe5KkKjFm7l67axQtZ6Y4DQnRltUsa7EHxhdxcQVKdadarVr-p24_xvsV3-x-2fQLe5wyEqrhIA3gbONoFFaJz_BVCRppJS-g3I642F</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1497040101</pqid></control><display><type>article</type><title>Essential role of poly(ADP-ribosyl)ation in cocaine action</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Scobie, Kimberly N. ; Damez-Werno, Diane ; Sun, HaoSheng ; Shao, NingYi ; Gancarz, Amy ; Panganiban, Clarisse H. ; Dias, Caroline ; Koo, JaWook ; Caiafa, Paola ; Kaufman, Lewis ; Neve, Rachael L. ; Dietz, David M. ; Li Shen ; Nestler, Eric J.</creator><creatorcontrib>Scobie, Kimberly N. ; Damez-Werno, Diane ; Sun, HaoSheng ; Shao, NingYi ; Gancarz, Amy ; Panganiban, Clarisse H. ; Dias, Caroline ; Koo, JaWook ; Caiafa, Paola ; Kaufman, Lewis ; Neve, Rachael L. ; Dietz, David M. ; Li Shen ; Nestler, Eric J.</creatorcontrib><description>Many of the long-term effects of cocaine on the brain's reward circuitry have been shown to be mediated by alterations in gene expression. Several chromatin modifications, including histone acetylation and methylation, have been implicated in this regulation, but the effect of other histone modifications remains poorly understood. Poly(ADP-ribose) polymerase-1 (PARP-1), a ubiquitous and abundant nuclear protein, catalyzes the synthesis of a negatively charged polymer called poly(ADP-ribose) or PAR on histones and other substrate proteins and forms transcriptional regulatory complexes with several other chromatin proteins. Here, we identify an essential role for PARP-1 in cocaine-induced molecular, neural, and behavioral plasticity. Repeated cocaine administration, including self-administration, increased global levels of PARP-1 and its mark PAR in mouse nucleus accumbens (NAc), a key brain reward region. Using PARP-1 inhibitors and viral-mediated gene transfer, we established that PARP-1 induction in NAc mediates enhanced behavioral responses to cocaine, including increased self-administration of the drug. Using chromatin immunoprecipitation sequencing, we demonstrated a global, genome-wide enrichment of PARP-1 in NAc of cocaine-exposed mice and identified several PARP-1 target genes that could contribute to the lasting effects of cocaine. Specifically, we identified sidekick-1—important for synaptic connections during development—as a critical PARP-1 target gene involved in cocaine's behavioral effects as well as in its ability to induce dendritic spines on NAc neurons. These findings establish the involvement of PARP-1 and PARylation in the long-term actions of cocaine.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1319703111</identifier><identifier>PMID: 24449909</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Behavior, Animal - drug effects ; Biological Sciences ; Chromatin ; Chromatin Immunoprecipitation ; Cocaine ; Cocaine - administration &amp; dosage ; Cocaine - pharmacology ; Dendritic Spines - drug effects ; Dendritic Spines - metabolism ; DNA ; Dose response relationship ; Drug addiction ; Gene expression ; Gene expression regulation ; Gene Expression Regulation, Enzymologic - drug effects ; Genes ; Genome - genetics ; Histones ; Immunoglobulin G - metabolism ; Male ; Membrane Proteins - metabolism ; Messenger RNA ; Mice ; Mice, Inbred C57BL ; Neurons ; Nucleus Accumbens - drug effects ; Nucleus Accumbens - enzymology ; Poly Adenosine Diphosphate Ribose - metabolism ; Poly(ADP-ribose) Polymerases - genetics ; Poly(ADP-ribose) Polymerases - metabolism ; Protein Binding - drug effects ; Rats ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Substrate Specificity - drug effects ; Transcription, Genetic - drug effects</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2014-02, Vol.111 (5), p.2005-2010</ispartof><rights>copyright © 1993–2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Feb 4, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c532t-7f559c4b5f5f28c86ab72b6fa86b50353c445361a7cc52145e614bda50cff13</citedby><cites>FETCH-LOGICAL-c532t-7f559c4b5f5f28c86ab72b6fa86b50353c445361a7cc52145e614bda50cff13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/111/5.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23766933$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23766933$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768,58213,58446</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24449909$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Scobie, Kimberly N.</creatorcontrib><creatorcontrib>Damez-Werno, Diane</creatorcontrib><creatorcontrib>Sun, HaoSheng</creatorcontrib><creatorcontrib>Shao, NingYi</creatorcontrib><creatorcontrib>Gancarz, Amy</creatorcontrib><creatorcontrib>Panganiban, Clarisse H.</creatorcontrib><creatorcontrib>Dias, Caroline</creatorcontrib><creatorcontrib>Koo, JaWook</creatorcontrib><creatorcontrib>Caiafa, Paola</creatorcontrib><creatorcontrib>Kaufman, Lewis</creatorcontrib><creatorcontrib>Neve, Rachael L.</creatorcontrib><creatorcontrib>Dietz, David M.</creatorcontrib><creatorcontrib>Li Shen</creatorcontrib><creatorcontrib>Nestler, Eric J.</creatorcontrib><title>Essential role of poly(ADP-ribosyl)ation in cocaine action</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Many of the long-term effects of cocaine on the brain's reward circuitry have been shown to be mediated by alterations in gene expression. Several chromatin modifications, including histone acetylation and methylation, have been implicated in this regulation, but the effect of other histone modifications remains poorly understood. Poly(ADP-ribose) polymerase-1 (PARP-1), a ubiquitous and abundant nuclear protein, catalyzes the synthesis of a negatively charged polymer called poly(ADP-ribose) or PAR on histones and other substrate proteins and forms transcriptional regulatory complexes with several other chromatin proteins. Here, we identify an essential role for PARP-1 in cocaine-induced molecular, neural, and behavioral plasticity. Repeated cocaine administration, including self-administration, increased global levels of PARP-1 and its mark PAR in mouse nucleus accumbens (NAc), a key brain reward region. Using PARP-1 inhibitors and viral-mediated gene transfer, we established that PARP-1 induction in NAc mediates enhanced behavioral responses to cocaine, including increased self-administration of the drug. Using chromatin immunoprecipitation sequencing, we demonstrated a global, genome-wide enrichment of PARP-1 in NAc of cocaine-exposed mice and identified several PARP-1 target genes that could contribute to the lasting effects of cocaine. Specifically, we identified sidekick-1—important for synaptic connections during development—as a critical PARP-1 target gene involved in cocaine's behavioral effects as well as in its ability to induce dendritic spines on NAc neurons. These findings establish the involvement of PARP-1 and PARylation in the long-term actions of cocaine.</description><subject>Animals</subject><subject>Behavior, Animal - drug effects</subject><subject>Biological Sciences</subject><subject>Chromatin</subject><subject>Chromatin Immunoprecipitation</subject><subject>Cocaine</subject><subject>Cocaine - administration &amp; dosage</subject><subject>Cocaine - pharmacology</subject><subject>Dendritic Spines - drug effects</subject><subject>Dendritic Spines - metabolism</subject><subject>DNA</subject><subject>Dose response relationship</subject><subject>Drug addiction</subject><subject>Gene expression</subject><subject>Gene expression regulation</subject><subject>Gene Expression Regulation, Enzymologic - drug effects</subject><subject>Genes</subject><subject>Genome - genetics</subject><subject>Histones</subject><subject>Immunoglobulin G - metabolism</subject><subject>Male</subject><subject>Membrane Proteins - metabolism</subject><subject>Messenger RNA</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Neurons</subject><subject>Nucleus Accumbens - drug effects</subject><subject>Nucleus Accumbens - enzymology</subject><subject>Poly Adenosine Diphosphate Ribose - metabolism</subject><subject>Poly(ADP-ribose) Polymerases - genetics</subject><subject>Poly(ADP-ribose) Polymerases - metabolism</subject><subject>Protein Binding - drug effects</subject><subject>Rats</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Substrate Specificity - drug effects</subject><subject>Transcription, Genetic - drug effects</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpVkM9LwzAUx4Mobk7PnpSCFz10e69JmsaDMOb8AQMFvYc0a7SjNjPphP33tmxOPQVevu_zvnwIOUUYIgg6WtY6DJGiFEARcY_0ESTGKZOwT_oAiYgzlrAeOQphAQCSZ3BIegljTEqQfXI9DaGom1JXkXdVETkbLV21vhzfPse-zF1YV1e6KV0dlXVknNFlXUTadJNjcmB1FYqT7TsgL3fT18lDPHu6f5yMZ7HhNGliYTmXhuXccptkJkt1LpI8tTpLcw6UU8MYpylqYQxPkPEiRZbPNQdjLdIBudlQl6v8o5ibtqzXlVr68kP7tXK6VP9_6vJdvbkvRSVmQsgWcLEFePe5KkKjFm7l67axQtZ6Y4DQnRltUsa7EHxhdxcQVKdadarVr-p24_xvsV3-x-2fQLe5wyEqrhIA3gbONoFFaJz_BVCRppJS-g3I642F</recordid><startdate>20140204</startdate><enddate>20140204</enddate><creator>Scobie, Kimberly N.</creator><creator>Damez-Werno, Diane</creator><creator>Sun, HaoSheng</creator><creator>Shao, NingYi</creator><creator>Gancarz, Amy</creator><creator>Panganiban, Clarisse H.</creator><creator>Dias, Caroline</creator><creator>Koo, JaWook</creator><creator>Caiafa, Paola</creator><creator>Kaufman, Lewis</creator><creator>Neve, Rachael L.</creator><creator>Dietz, David M.</creator><creator>Li Shen</creator><creator>Nestler, Eric J.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20140204</creationdate><title>Essential role of poly(ADP-ribosyl)ation in cocaine action</title><author>Scobie, Kimberly N. ; Damez-Werno, Diane ; Sun, HaoSheng ; Shao, NingYi ; Gancarz, Amy ; Panganiban, Clarisse H. ; Dias, Caroline ; Koo, JaWook ; Caiafa, Paola ; Kaufman, Lewis ; Neve, Rachael L. ; Dietz, David M. ; Li Shen ; Nestler, Eric J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c532t-7f559c4b5f5f28c86ab72b6fa86b50353c445361a7cc52145e614bda50cff13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Behavior, Animal - drug effects</topic><topic>Biological Sciences</topic><topic>Chromatin</topic><topic>Chromatin Immunoprecipitation</topic><topic>Cocaine</topic><topic>Cocaine - administration &amp; dosage</topic><topic>Cocaine - pharmacology</topic><topic>Dendritic Spines - drug effects</topic><topic>Dendritic Spines - metabolism</topic><topic>DNA</topic><topic>Dose response relationship</topic><topic>Drug addiction</topic><topic>Gene expression</topic><topic>Gene expression regulation</topic><topic>Gene Expression Regulation, Enzymologic - drug effects</topic><topic>Genes</topic><topic>Genome - genetics</topic><topic>Histones</topic><topic>Immunoglobulin G - metabolism</topic><topic>Male</topic><topic>Membrane Proteins - metabolism</topic><topic>Messenger RNA</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Neurons</topic><topic>Nucleus Accumbens - drug effects</topic><topic>Nucleus Accumbens - enzymology</topic><topic>Poly Adenosine Diphosphate Ribose - metabolism</topic><topic>Poly(ADP-ribose) Polymerases - genetics</topic><topic>Poly(ADP-ribose) Polymerases - metabolism</topic><topic>Protein Binding - drug effects</topic><topic>Rats</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Substrate Specificity - drug effects</topic><topic>Transcription, Genetic - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scobie, Kimberly N.</creatorcontrib><creatorcontrib>Damez-Werno, Diane</creatorcontrib><creatorcontrib>Sun, HaoSheng</creatorcontrib><creatorcontrib>Shao, NingYi</creatorcontrib><creatorcontrib>Gancarz, Amy</creatorcontrib><creatorcontrib>Panganiban, Clarisse H.</creatorcontrib><creatorcontrib>Dias, Caroline</creatorcontrib><creatorcontrib>Koo, JaWook</creatorcontrib><creatorcontrib>Caiafa, Paola</creatorcontrib><creatorcontrib>Kaufman, Lewis</creatorcontrib><creatorcontrib>Neve, Rachael L.</creatorcontrib><creatorcontrib>Dietz, David M.</creatorcontrib><creatorcontrib>Li Shen</creatorcontrib><creatorcontrib>Nestler, Eric J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scobie, Kimberly N.</au><au>Damez-Werno, Diane</au><au>Sun, HaoSheng</au><au>Shao, NingYi</au><au>Gancarz, Amy</au><au>Panganiban, Clarisse H.</au><au>Dias, Caroline</au><au>Koo, JaWook</au><au>Caiafa, Paola</au><au>Kaufman, Lewis</au><au>Neve, Rachael L.</au><au>Dietz, David M.</au><au>Li Shen</au><au>Nestler, Eric J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Essential role of poly(ADP-ribosyl)ation in cocaine action</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2014-02-04</date><risdate>2014</risdate><volume>111</volume><issue>5</issue><spage>2005</spage><epage>2010</epage><pages>2005-2010</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Many of the long-term effects of cocaine on the brain's reward circuitry have been shown to be mediated by alterations in gene expression. Several chromatin modifications, including histone acetylation and methylation, have been implicated in this regulation, but the effect of other histone modifications remains poorly understood. Poly(ADP-ribose) polymerase-1 (PARP-1), a ubiquitous and abundant nuclear protein, catalyzes the synthesis of a negatively charged polymer called poly(ADP-ribose) or PAR on histones and other substrate proteins and forms transcriptional regulatory complexes with several other chromatin proteins. Here, we identify an essential role for PARP-1 in cocaine-induced molecular, neural, and behavioral plasticity. Repeated cocaine administration, including self-administration, increased global levels of PARP-1 and its mark PAR in mouse nucleus accumbens (NAc), a key brain reward region. Using PARP-1 inhibitors and viral-mediated gene transfer, we established that PARP-1 induction in NAc mediates enhanced behavioral responses to cocaine, including increased self-administration of the drug. Using chromatin immunoprecipitation sequencing, we demonstrated a global, genome-wide enrichment of PARP-1 in NAc of cocaine-exposed mice and identified several PARP-1 target genes that could contribute to the lasting effects of cocaine. Specifically, we identified sidekick-1—important for synaptic connections during development—as a critical PARP-1 target gene involved in cocaine's behavioral effects as well as in its ability to induce dendritic spines on NAc neurons. These findings establish the involvement of PARP-1 and PARylation in the long-term actions of cocaine.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>24449909</pmid><doi>10.1073/pnas.1319703111</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2014-02, Vol.111 (5), p.2005-2010
issn 0027-8424
1091-6490
language eng
recordid cdi_crossref_primary_10_1073_pnas_1319703111
source JSTOR Archival Journals and Primary Sources Collection; PubMed Central
subjects Animals
Behavior, Animal - drug effects
Biological Sciences
Chromatin
Chromatin Immunoprecipitation
Cocaine
Cocaine - administration & dosage
Cocaine - pharmacology
Dendritic Spines - drug effects
Dendritic Spines - metabolism
DNA
Dose response relationship
Drug addiction
Gene expression
Gene expression regulation
Gene Expression Regulation, Enzymologic - drug effects
Genes
Genome - genetics
Histones
Immunoglobulin G - metabolism
Male
Membrane Proteins - metabolism
Messenger RNA
Mice
Mice, Inbred C57BL
Neurons
Nucleus Accumbens - drug effects
Nucleus Accumbens - enzymology
Poly Adenosine Diphosphate Ribose - metabolism
Poly(ADP-ribose) Polymerases - genetics
Poly(ADP-ribose) Polymerases - metabolism
Protein Binding - drug effects
Rats
RNA, Messenger - genetics
RNA, Messenger - metabolism
Substrate Specificity - drug effects
Transcription, Genetic - drug effects
title Essential role of poly(ADP-ribosyl)ation in cocaine action
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T23%3A11%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Essential%20role%20of%20poly(ADP-ribosyl)ation%20in%20cocaine%20action&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Scobie,%20Kimberly%20N.&rft.date=2014-02-04&rft.volume=111&rft.issue=5&rft.spage=2005&rft.epage=2010&rft.pages=2005-2010&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1319703111&rft_dat=%3Cjstor_cross%3E23766933%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c532t-7f559c4b5f5f28c86ab72b6fa86b50353c445361a7cc52145e614bda50cff13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1497040101&rft_id=info:pmid/24449909&rft_jstor_id=23766933&rfr_iscdi=true