Loading…
Essential role of poly(ADP-ribosyl)ation in cocaine action
Many of the long-term effects of cocaine on the brain's reward circuitry have been shown to be mediated by alterations in gene expression. Several chromatin modifications, including histone acetylation and methylation, have been implicated in this regulation, but the effect of other histone mod...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2014-02, Vol.111 (5), p.2005-2010 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c532t-7f559c4b5f5f28c86ab72b6fa86b50353c445361a7cc52145e614bda50cff13 |
---|---|
cites | cdi_FETCH-LOGICAL-c532t-7f559c4b5f5f28c86ab72b6fa86b50353c445361a7cc52145e614bda50cff13 |
container_end_page | 2010 |
container_issue | 5 |
container_start_page | 2005 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 111 |
creator | Scobie, Kimberly N. Damez-Werno, Diane Sun, HaoSheng Shao, NingYi Gancarz, Amy Panganiban, Clarisse H. Dias, Caroline Koo, JaWook Caiafa, Paola Kaufman, Lewis Neve, Rachael L. Dietz, David M. Li Shen Nestler, Eric J. |
description | Many of the long-term effects of cocaine on the brain's reward circuitry have been shown to be mediated by alterations in gene expression. Several chromatin modifications, including histone acetylation and methylation, have been implicated in this regulation, but the effect of other histone modifications remains poorly understood. Poly(ADP-ribose) polymerase-1 (PARP-1), a ubiquitous and abundant nuclear protein, catalyzes the synthesis of a negatively charged polymer called poly(ADP-ribose) or PAR on histones and other substrate proteins and forms transcriptional regulatory complexes with several other chromatin proteins. Here, we identify an essential role for PARP-1 in cocaine-induced molecular, neural, and behavioral plasticity. Repeated cocaine administration, including self-administration, increased global levels of PARP-1 and its mark PAR in mouse nucleus accumbens (NAc), a key brain reward region. Using PARP-1 inhibitors and viral-mediated gene transfer, we established that PARP-1 induction in NAc mediates enhanced behavioral responses to cocaine, including increased self-administration of the drug. Using chromatin immunoprecipitation sequencing, we demonstrated a global, genome-wide enrichment of PARP-1 in NAc of cocaine-exposed mice and identified several PARP-1 target genes that could contribute to the lasting effects of cocaine. Specifically, we identified sidekick-1—important for synaptic connections during development—as a critical PARP-1 target gene involved in cocaine's behavioral effects as well as in its ability to induce dendritic spines on NAc neurons. These findings establish the involvement of PARP-1 and PARylation in the long-term actions of cocaine. |
doi_str_mv | 10.1073/pnas.1319703111 |
format | article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_1319703111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23766933</jstor_id><sourcerecordid>23766933</sourcerecordid><originalsourceid>FETCH-LOGICAL-c532t-7f559c4b5f5f28c86ab72b6fa86b50353c445361a7cc52145e614bda50cff13</originalsourceid><addsrcrecordid>eNpVkM9LwzAUx4Mobk7PnpSCFz10e69JmsaDMOb8AQMFvYc0a7SjNjPphP33tmxOPQVevu_zvnwIOUUYIgg6WtY6DJGiFEARcY_0ESTGKZOwT_oAiYgzlrAeOQphAQCSZ3BIegljTEqQfXI9DaGom1JXkXdVETkbLV21vhzfPse-zF1YV1e6KV0dlXVknNFlXUTadJNjcmB1FYqT7TsgL3fT18lDPHu6f5yMZ7HhNGliYTmXhuXccptkJkt1LpI8tTpLcw6UU8MYpylqYQxPkPEiRZbPNQdjLdIBudlQl6v8o5ibtqzXlVr68kP7tXK6VP9_6vJdvbkvRSVmQsgWcLEFePe5KkKjFm7l67axQtZ6Y4DQnRltUsa7EHxhdxcQVKdadarVr-p24_xvsV3-x-2fQLe5wyEqrhIA3gbONoFFaJz_BVCRppJS-g3I642F</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1497040101</pqid></control><display><type>article</type><title>Essential role of poly(ADP-ribosyl)ation in cocaine action</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Scobie, Kimberly N. ; Damez-Werno, Diane ; Sun, HaoSheng ; Shao, NingYi ; Gancarz, Amy ; Panganiban, Clarisse H. ; Dias, Caroline ; Koo, JaWook ; Caiafa, Paola ; Kaufman, Lewis ; Neve, Rachael L. ; Dietz, David M. ; Li Shen ; Nestler, Eric J.</creator><creatorcontrib>Scobie, Kimberly N. ; Damez-Werno, Diane ; Sun, HaoSheng ; Shao, NingYi ; Gancarz, Amy ; Panganiban, Clarisse H. ; Dias, Caroline ; Koo, JaWook ; Caiafa, Paola ; Kaufman, Lewis ; Neve, Rachael L. ; Dietz, David M. ; Li Shen ; Nestler, Eric J.</creatorcontrib><description>Many of the long-term effects of cocaine on the brain's reward circuitry have been shown to be mediated by alterations in gene expression. Several chromatin modifications, including histone acetylation and methylation, have been implicated in this regulation, but the effect of other histone modifications remains poorly understood. Poly(ADP-ribose) polymerase-1 (PARP-1), a ubiquitous and abundant nuclear protein, catalyzes the synthesis of a negatively charged polymer called poly(ADP-ribose) or PAR on histones and other substrate proteins and forms transcriptional regulatory complexes with several other chromatin proteins. Here, we identify an essential role for PARP-1 in cocaine-induced molecular, neural, and behavioral plasticity. Repeated cocaine administration, including self-administration, increased global levels of PARP-1 and its mark PAR in mouse nucleus accumbens (NAc), a key brain reward region. Using PARP-1 inhibitors and viral-mediated gene transfer, we established that PARP-1 induction in NAc mediates enhanced behavioral responses to cocaine, including increased self-administration of the drug. Using chromatin immunoprecipitation sequencing, we demonstrated a global, genome-wide enrichment of PARP-1 in NAc of cocaine-exposed mice and identified several PARP-1 target genes that could contribute to the lasting effects of cocaine. Specifically, we identified sidekick-1—important for synaptic connections during development—as a critical PARP-1 target gene involved in cocaine's behavioral effects as well as in its ability to induce dendritic spines on NAc neurons. These findings establish the involvement of PARP-1 and PARylation in the long-term actions of cocaine.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1319703111</identifier><identifier>PMID: 24449909</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Behavior, Animal - drug effects ; Biological Sciences ; Chromatin ; Chromatin Immunoprecipitation ; Cocaine ; Cocaine - administration & dosage ; Cocaine - pharmacology ; Dendritic Spines - drug effects ; Dendritic Spines - metabolism ; DNA ; Dose response relationship ; Drug addiction ; Gene expression ; Gene expression regulation ; Gene Expression Regulation, Enzymologic - drug effects ; Genes ; Genome - genetics ; Histones ; Immunoglobulin G - metabolism ; Male ; Membrane Proteins - metabolism ; Messenger RNA ; Mice ; Mice, Inbred C57BL ; Neurons ; Nucleus Accumbens - drug effects ; Nucleus Accumbens - enzymology ; Poly Adenosine Diphosphate Ribose - metabolism ; Poly(ADP-ribose) Polymerases - genetics ; Poly(ADP-ribose) Polymerases - metabolism ; Protein Binding - drug effects ; Rats ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Substrate Specificity - drug effects ; Transcription, Genetic - drug effects</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2014-02, Vol.111 (5), p.2005-2010</ispartof><rights>copyright © 1993–2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Feb 4, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c532t-7f559c4b5f5f28c86ab72b6fa86b50353c445361a7cc52145e614bda50cff13</citedby><cites>FETCH-LOGICAL-c532t-7f559c4b5f5f28c86ab72b6fa86b50353c445361a7cc52145e614bda50cff13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/111/5.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23766933$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23766933$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768,58213,58446</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24449909$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Scobie, Kimberly N.</creatorcontrib><creatorcontrib>Damez-Werno, Diane</creatorcontrib><creatorcontrib>Sun, HaoSheng</creatorcontrib><creatorcontrib>Shao, NingYi</creatorcontrib><creatorcontrib>Gancarz, Amy</creatorcontrib><creatorcontrib>Panganiban, Clarisse H.</creatorcontrib><creatorcontrib>Dias, Caroline</creatorcontrib><creatorcontrib>Koo, JaWook</creatorcontrib><creatorcontrib>Caiafa, Paola</creatorcontrib><creatorcontrib>Kaufman, Lewis</creatorcontrib><creatorcontrib>Neve, Rachael L.</creatorcontrib><creatorcontrib>Dietz, David M.</creatorcontrib><creatorcontrib>Li Shen</creatorcontrib><creatorcontrib>Nestler, Eric J.</creatorcontrib><title>Essential role of poly(ADP-ribosyl)ation in cocaine action</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Many of the long-term effects of cocaine on the brain's reward circuitry have been shown to be mediated by alterations in gene expression. Several chromatin modifications, including histone acetylation and methylation, have been implicated in this regulation, but the effect of other histone modifications remains poorly understood. Poly(ADP-ribose) polymerase-1 (PARP-1), a ubiquitous and abundant nuclear protein, catalyzes the synthesis of a negatively charged polymer called poly(ADP-ribose) or PAR on histones and other substrate proteins and forms transcriptional regulatory complexes with several other chromatin proteins. Here, we identify an essential role for PARP-1 in cocaine-induced molecular, neural, and behavioral plasticity. Repeated cocaine administration, including self-administration, increased global levels of PARP-1 and its mark PAR in mouse nucleus accumbens (NAc), a key brain reward region. Using PARP-1 inhibitors and viral-mediated gene transfer, we established that PARP-1 induction in NAc mediates enhanced behavioral responses to cocaine, including increased self-administration of the drug. Using chromatin immunoprecipitation sequencing, we demonstrated a global, genome-wide enrichment of PARP-1 in NAc of cocaine-exposed mice and identified several PARP-1 target genes that could contribute to the lasting effects of cocaine. Specifically, we identified sidekick-1—important for synaptic connections during development—as a critical PARP-1 target gene involved in cocaine's behavioral effects as well as in its ability to induce dendritic spines on NAc neurons. These findings establish the involvement of PARP-1 and PARylation in the long-term actions of cocaine.</description><subject>Animals</subject><subject>Behavior, Animal - drug effects</subject><subject>Biological Sciences</subject><subject>Chromatin</subject><subject>Chromatin Immunoprecipitation</subject><subject>Cocaine</subject><subject>Cocaine - administration & dosage</subject><subject>Cocaine - pharmacology</subject><subject>Dendritic Spines - drug effects</subject><subject>Dendritic Spines - metabolism</subject><subject>DNA</subject><subject>Dose response relationship</subject><subject>Drug addiction</subject><subject>Gene expression</subject><subject>Gene expression regulation</subject><subject>Gene Expression Regulation, Enzymologic - drug effects</subject><subject>Genes</subject><subject>Genome - genetics</subject><subject>Histones</subject><subject>Immunoglobulin G - metabolism</subject><subject>Male</subject><subject>Membrane Proteins - metabolism</subject><subject>Messenger RNA</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Neurons</subject><subject>Nucleus Accumbens - drug effects</subject><subject>Nucleus Accumbens - enzymology</subject><subject>Poly Adenosine Diphosphate Ribose - metabolism</subject><subject>Poly(ADP-ribose) Polymerases - genetics</subject><subject>Poly(ADP-ribose) Polymerases - metabolism</subject><subject>Protein Binding - drug effects</subject><subject>Rats</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Substrate Specificity - drug effects</subject><subject>Transcription, Genetic - drug effects</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpVkM9LwzAUx4Mobk7PnpSCFz10e69JmsaDMOb8AQMFvYc0a7SjNjPphP33tmxOPQVevu_zvnwIOUUYIgg6WtY6DJGiFEARcY_0ESTGKZOwT_oAiYgzlrAeOQphAQCSZ3BIegljTEqQfXI9DaGom1JXkXdVETkbLV21vhzfPse-zF1YV1e6KV0dlXVknNFlXUTadJNjcmB1FYqT7TsgL3fT18lDPHu6f5yMZ7HhNGliYTmXhuXccptkJkt1LpI8tTpLcw6UU8MYpylqYQxPkPEiRZbPNQdjLdIBudlQl6v8o5ibtqzXlVr68kP7tXK6VP9_6vJdvbkvRSVmQsgWcLEFePe5KkKjFm7l67axQtZ6Y4DQnRltUsa7EHxhdxcQVKdadarVr-p24_xvsV3-x-2fQLe5wyEqrhIA3gbONoFFaJz_BVCRppJS-g3I642F</recordid><startdate>20140204</startdate><enddate>20140204</enddate><creator>Scobie, Kimberly N.</creator><creator>Damez-Werno, Diane</creator><creator>Sun, HaoSheng</creator><creator>Shao, NingYi</creator><creator>Gancarz, Amy</creator><creator>Panganiban, Clarisse H.</creator><creator>Dias, Caroline</creator><creator>Koo, JaWook</creator><creator>Caiafa, Paola</creator><creator>Kaufman, Lewis</creator><creator>Neve, Rachael L.</creator><creator>Dietz, David M.</creator><creator>Li Shen</creator><creator>Nestler, Eric J.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20140204</creationdate><title>Essential role of poly(ADP-ribosyl)ation in cocaine action</title><author>Scobie, Kimberly N. ; Damez-Werno, Diane ; Sun, HaoSheng ; Shao, NingYi ; Gancarz, Amy ; Panganiban, Clarisse H. ; Dias, Caroline ; Koo, JaWook ; Caiafa, Paola ; Kaufman, Lewis ; Neve, Rachael L. ; Dietz, David M. ; Li Shen ; Nestler, Eric J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c532t-7f559c4b5f5f28c86ab72b6fa86b50353c445361a7cc52145e614bda50cff13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Behavior, Animal - drug effects</topic><topic>Biological Sciences</topic><topic>Chromatin</topic><topic>Chromatin Immunoprecipitation</topic><topic>Cocaine</topic><topic>Cocaine - administration & dosage</topic><topic>Cocaine - pharmacology</topic><topic>Dendritic Spines - drug effects</topic><topic>Dendritic Spines - metabolism</topic><topic>DNA</topic><topic>Dose response relationship</topic><topic>Drug addiction</topic><topic>Gene expression</topic><topic>Gene expression regulation</topic><topic>Gene Expression Regulation, Enzymologic - drug effects</topic><topic>Genes</topic><topic>Genome - genetics</topic><topic>Histones</topic><topic>Immunoglobulin G - metabolism</topic><topic>Male</topic><topic>Membrane Proteins - metabolism</topic><topic>Messenger RNA</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Neurons</topic><topic>Nucleus Accumbens - drug effects</topic><topic>Nucleus Accumbens - enzymology</topic><topic>Poly Adenosine Diphosphate Ribose - metabolism</topic><topic>Poly(ADP-ribose) Polymerases - genetics</topic><topic>Poly(ADP-ribose) Polymerases - metabolism</topic><topic>Protein Binding - drug effects</topic><topic>Rats</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Substrate Specificity - drug effects</topic><topic>Transcription, Genetic - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scobie, Kimberly N.</creatorcontrib><creatorcontrib>Damez-Werno, Diane</creatorcontrib><creatorcontrib>Sun, HaoSheng</creatorcontrib><creatorcontrib>Shao, NingYi</creatorcontrib><creatorcontrib>Gancarz, Amy</creatorcontrib><creatorcontrib>Panganiban, Clarisse H.</creatorcontrib><creatorcontrib>Dias, Caroline</creatorcontrib><creatorcontrib>Koo, JaWook</creatorcontrib><creatorcontrib>Caiafa, Paola</creatorcontrib><creatorcontrib>Kaufman, Lewis</creatorcontrib><creatorcontrib>Neve, Rachael L.</creatorcontrib><creatorcontrib>Dietz, David M.</creatorcontrib><creatorcontrib>Li Shen</creatorcontrib><creatorcontrib>Nestler, Eric J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scobie, Kimberly N.</au><au>Damez-Werno, Diane</au><au>Sun, HaoSheng</au><au>Shao, NingYi</au><au>Gancarz, Amy</au><au>Panganiban, Clarisse H.</au><au>Dias, Caroline</au><au>Koo, JaWook</au><au>Caiafa, Paola</au><au>Kaufman, Lewis</au><au>Neve, Rachael L.</au><au>Dietz, David M.</au><au>Li Shen</au><au>Nestler, Eric J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Essential role of poly(ADP-ribosyl)ation in cocaine action</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2014-02-04</date><risdate>2014</risdate><volume>111</volume><issue>5</issue><spage>2005</spage><epage>2010</epage><pages>2005-2010</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Many of the long-term effects of cocaine on the brain's reward circuitry have been shown to be mediated by alterations in gene expression. Several chromatin modifications, including histone acetylation and methylation, have been implicated in this regulation, but the effect of other histone modifications remains poorly understood. Poly(ADP-ribose) polymerase-1 (PARP-1), a ubiquitous and abundant nuclear protein, catalyzes the synthesis of a negatively charged polymer called poly(ADP-ribose) or PAR on histones and other substrate proteins and forms transcriptional regulatory complexes with several other chromatin proteins. Here, we identify an essential role for PARP-1 in cocaine-induced molecular, neural, and behavioral plasticity. Repeated cocaine administration, including self-administration, increased global levels of PARP-1 and its mark PAR in mouse nucleus accumbens (NAc), a key brain reward region. Using PARP-1 inhibitors and viral-mediated gene transfer, we established that PARP-1 induction in NAc mediates enhanced behavioral responses to cocaine, including increased self-administration of the drug. Using chromatin immunoprecipitation sequencing, we demonstrated a global, genome-wide enrichment of PARP-1 in NAc of cocaine-exposed mice and identified several PARP-1 target genes that could contribute to the lasting effects of cocaine. Specifically, we identified sidekick-1—important for synaptic connections during development—as a critical PARP-1 target gene involved in cocaine's behavioral effects as well as in its ability to induce dendritic spines on NAc neurons. These findings establish the involvement of PARP-1 and PARylation in the long-term actions of cocaine.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>24449909</pmid><doi>10.1073/pnas.1319703111</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2014-02, Vol.111 (5), p.2005-2010 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_crossref_primary_10_1073_pnas_1319703111 |
source | JSTOR Archival Journals and Primary Sources Collection; PubMed Central |
subjects | Animals Behavior, Animal - drug effects Biological Sciences Chromatin Chromatin Immunoprecipitation Cocaine Cocaine - administration & dosage Cocaine - pharmacology Dendritic Spines - drug effects Dendritic Spines - metabolism DNA Dose response relationship Drug addiction Gene expression Gene expression regulation Gene Expression Regulation, Enzymologic - drug effects Genes Genome - genetics Histones Immunoglobulin G - metabolism Male Membrane Proteins - metabolism Messenger RNA Mice Mice, Inbred C57BL Neurons Nucleus Accumbens - drug effects Nucleus Accumbens - enzymology Poly Adenosine Diphosphate Ribose - metabolism Poly(ADP-ribose) Polymerases - genetics Poly(ADP-ribose) Polymerases - metabolism Protein Binding - drug effects Rats RNA, Messenger - genetics RNA, Messenger - metabolism Substrate Specificity - drug effects Transcription, Genetic - drug effects |
title | Essential role of poly(ADP-ribosyl)ation in cocaine action |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T23%3A11%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Essential%20role%20of%20poly(ADP-ribosyl)ation%20in%20cocaine%20action&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Scobie,%20Kimberly%20N.&rft.date=2014-02-04&rft.volume=111&rft.issue=5&rft.spage=2005&rft.epage=2010&rft.pages=2005-2010&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1319703111&rft_dat=%3Cjstor_cross%3E23766933%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c532t-7f559c4b5f5f28c86ab72b6fa86b50353c445361a7cc52145e614bda50cff13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1497040101&rft_id=info:pmid/24449909&rft_jstor_id=23766933&rfr_iscdi=true |