Loading…
Advances in Random Matrix Theory, Zeta Functions, and Sphere Packing
Over four hundred years ago, Sir Walter Raleigh asked his mathematical assistant to find formulas for the number of cannonballs in regularly stacked piles. These investigations aroused the curiosity of the astronomer Johannes Kepler and led to a problem that has gone centuries without a solution: wh...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2000-11, Vol.97 (24), p.12963-12964 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c488t-9ebb94f5d639bd611ad7f18fcaa531afd1b0e496b8b2860eb71c908d683ca6c03 |
---|---|
cites | cdi_FETCH-LOGICAL-c488t-9ebb94f5d639bd611ad7f18fcaa531afd1b0e496b8b2860eb71c908d683ca6c03 |
container_end_page | 12964 |
container_issue | 24 |
container_start_page | 12963 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 97 |
creator | Hales, T. C. Sarnak, P. Pugh, M. C. |
description | Over four hundred years ago, Sir Walter Raleigh asked his mathematical assistant to find formulas for the number of cannonballs in regularly stacked piles. These investigations aroused the curiosity of the astronomer Johannes Kepler and led to a problem that has gone centuries without a solution: why is the familiar cannonball stack the most efficient arrangement possible? Here we discuss the solution that Hales found in 1998. Almost every part of the 282-page proof relies on long computer verifications. Random matrix theory was developed by physicists to describe the spectra of complex nuclei. In particular, the statistical fluctuations of the eigenvalues ("the energy levels") follow certain universal laws based on symmetry types. We describe these and then discuss the remarkable appearance of these laws for zeros of the Riemann zeta function (which is the generating function for prime numbers and is the last special function from the last century that is not understood today.) Explaining this phenomenon is a central problem. These topics are distinct, so we present them separately with their own introductory remarks. |
doi_str_mv | 10.1073/pnas.220396097 |
format | article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_220396097</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>123637</jstor_id><sourcerecordid>123637</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-9ebb94f5d639bd611ad7f18fcaa531afd1b0e496b8b2860eb71c908d683ca6c03</originalsourceid><addsrcrecordid>eNp90TtvFDEUBWALgcgmoaVBglEKRJFZrh_jh0QTBQJIiUAQGhrL4_FkZ5m1F9sTJf8er3ZJgILKxf2Ofa2D0FMMcwyCvl57k-aEAFUclHiAZhgUrjlT8BDNAIioJSNsD-2ntAQA1Uh4jPYwhkbihs_Q25Pu2njrUjX46ovxXVhVFybH4aa6XLgQb4-r7y6b6mzyNg_Bp-OqoOrreuGiqz4b-2PwV4foUW_G5J7szgP07ezd5emH-vzT-4-nJ-e1ZVLmWrm2VaxvOk5V23GMTSd6LHtrTEOx6TvcgmOKt7IlkoNrBbYKZMcltYZboAfozfbe9dSuXGedz9GMeh2HlYm3OphB_z3xw0JfhWtNGQhZ4i938Rh-Ti5lvRqSdeNovAtT0oIwSpTiBR79A5dhir58TRPAtGmwwAXNt8jGkFJ0_d0eGPSmG73pRt91UwLP_9z-nu_KKODFDmyCv8dKaMI0JmWvIl79X-h-GsfsbnKhz7Z0mXKI948RyqmgvwBQNawU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201355171</pqid></control><display><type>article</type><title>Advances in Random Matrix Theory, Zeta Functions, and Sphere Packing</title><source>Open Access: PubMed Central</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Hales, T. C. ; Sarnak, P. ; Pugh, M. C.</creator><creatorcontrib>Hales, T. C. ; Sarnak, P. ; Pugh, M. C.</creatorcontrib><description>Over four hundred years ago, Sir Walter Raleigh asked his mathematical assistant to find formulas for the number of cannonballs in regularly stacked piles. These investigations aroused the curiosity of the astronomer Johannes Kepler and led to a problem that has gone centuries without a solution: why is the familiar cannonball stack the most efficient arrangement possible? Here we discuss the solution that Hales found in 1998. Almost every part of the 282-page proof relies on long computer verifications. Random matrix theory was developed by physicists to describe the spectra of complex nuclei. In particular, the statistical fluctuations of the eigenvalues ("the energy levels") follow certain universal laws based on symmetry types. We describe these and then discuss the remarkable appearance of these laws for zeros of the Riemann zeta function (which is the generating function for prime numbers and is the last special function from the last century that is not understood today.) Explaining this phenomenon is a central problem. These topics are distinct, so we present them separately with their own introductory remarks.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.220396097</identifier><identifier>PMID: 11058156</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>Cannonballs ; Eigenvalues ; Family law ; Fractions ; From the Academy ; From the Academy: Frontiers of Science Symposium ; Mathematical functions ; Mathematics ; Matrix theory ; Statistics ; Symmetry ; Zero</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2000-11, Vol.97 (24), p.12963-12964</ispartof><rights>Copyright 1993-2000 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Nov 21, 2000</rights><rights>Copyright © 2000, The National Academy of Sciences 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-9ebb94f5d639bd611ad7f18fcaa531afd1b0e496b8b2860eb71c908d683ca6c03</citedby><cites>FETCH-LOGICAL-c488t-9ebb94f5d639bd611ad7f18fcaa531afd1b0e496b8b2860eb71c908d683ca6c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/97/24.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/123637$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/123637$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11058156$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hales, T. C.</creatorcontrib><creatorcontrib>Sarnak, P.</creatorcontrib><creatorcontrib>Pugh, M. C.</creatorcontrib><title>Advances in Random Matrix Theory, Zeta Functions, and Sphere Packing</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Over four hundred years ago, Sir Walter Raleigh asked his mathematical assistant to find formulas for the number of cannonballs in regularly stacked piles. These investigations aroused the curiosity of the astronomer Johannes Kepler and led to a problem that has gone centuries without a solution: why is the familiar cannonball stack the most efficient arrangement possible? Here we discuss the solution that Hales found in 1998. Almost every part of the 282-page proof relies on long computer verifications. Random matrix theory was developed by physicists to describe the spectra of complex nuclei. In particular, the statistical fluctuations of the eigenvalues ("the energy levels") follow certain universal laws based on symmetry types. We describe these and then discuss the remarkable appearance of these laws for zeros of the Riemann zeta function (which is the generating function for prime numbers and is the last special function from the last century that is not understood today.) Explaining this phenomenon is a central problem. These topics are distinct, so we present them separately with their own introductory remarks.</description><subject>Cannonballs</subject><subject>Eigenvalues</subject><subject>Family law</subject><subject>Fractions</subject><subject>From the Academy</subject><subject>From the Academy: Frontiers of Science Symposium</subject><subject>Mathematical functions</subject><subject>Mathematics</subject><subject>Matrix theory</subject><subject>Statistics</subject><subject>Symmetry</subject><subject>Zero</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNp90TtvFDEUBWALgcgmoaVBglEKRJFZrh_jh0QTBQJIiUAQGhrL4_FkZ5m1F9sTJf8er3ZJgILKxf2Ofa2D0FMMcwyCvl57k-aEAFUclHiAZhgUrjlT8BDNAIioJSNsD-2ntAQA1Uh4jPYwhkbihs_Q25Pu2njrUjX46ovxXVhVFybH4aa6XLgQb4-r7y6b6mzyNg_Bp-OqoOrreuGiqz4b-2PwV4foUW_G5J7szgP07ezd5emH-vzT-4-nJ-e1ZVLmWrm2VaxvOk5V23GMTSd6LHtrTEOx6TvcgmOKt7IlkoNrBbYKZMcltYZboAfozfbe9dSuXGedz9GMeh2HlYm3OphB_z3xw0JfhWtNGQhZ4i938Rh-Ti5lvRqSdeNovAtT0oIwSpTiBR79A5dhir58TRPAtGmwwAXNt8jGkFJ0_d0eGPSmG73pRt91UwLP_9z-nu_KKODFDmyCv8dKaMI0JmWvIl79X-h-GsfsbnKhz7Z0mXKI948RyqmgvwBQNawU</recordid><startdate>20001121</startdate><enddate>20001121</enddate><creator>Hales, T. C.</creator><creator>Sarnak, P.</creator><creator>Pugh, M. C.</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><general>The National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20001121</creationdate><title>Advances in Random Matrix Theory, Zeta Functions, and Sphere Packing</title><author>Hales, T. C. ; Sarnak, P. ; Pugh, M. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-9ebb94f5d639bd611ad7f18fcaa531afd1b0e496b8b2860eb71c908d683ca6c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Cannonballs</topic><topic>Eigenvalues</topic><topic>Family law</topic><topic>Fractions</topic><topic>From the Academy</topic><topic>From the Academy: Frontiers of Science Symposium</topic><topic>Mathematical functions</topic><topic>Mathematics</topic><topic>Matrix theory</topic><topic>Statistics</topic><topic>Symmetry</topic><topic>Zero</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hales, T. C.</creatorcontrib><creatorcontrib>Sarnak, P.</creatorcontrib><creatorcontrib>Pugh, M. C.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hales, T. C.</au><au>Sarnak, P.</au><au>Pugh, M. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advances in Random Matrix Theory, Zeta Functions, and Sphere Packing</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2000-11-21</date><risdate>2000</risdate><volume>97</volume><issue>24</issue><spage>12963</spage><epage>12964</epage><pages>12963-12964</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Over four hundred years ago, Sir Walter Raleigh asked his mathematical assistant to find formulas for the number of cannonballs in regularly stacked piles. These investigations aroused the curiosity of the astronomer Johannes Kepler and led to a problem that has gone centuries without a solution: why is the familiar cannonball stack the most efficient arrangement possible? Here we discuss the solution that Hales found in 1998. Almost every part of the 282-page proof relies on long computer verifications. Random matrix theory was developed by physicists to describe the spectra of complex nuclei. In particular, the statistical fluctuations of the eigenvalues ("the energy levels") follow certain universal laws based on symmetry types. We describe these and then discuss the remarkable appearance of these laws for zeros of the Riemann zeta function (which is the generating function for prime numbers and is the last special function from the last century that is not understood today.) Explaining this phenomenon is a central problem. These topics are distinct, so we present them separately with their own introductory remarks.</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>11058156</pmid><doi>10.1073/pnas.220396097</doi><tpages>2</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2000-11, Vol.97 (24), p.12963-12964 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_crossref_primary_10_1073_pnas_220396097 |
source | Open Access: PubMed Central; JSTOR Archival Journals and Primary Sources Collection |
subjects | Cannonballs Eigenvalues Family law Fractions From the Academy From the Academy: Frontiers of Science Symposium Mathematical functions Mathematics Matrix theory Statistics Symmetry Zero |
title | Advances in Random Matrix Theory, Zeta Functions, and Sphere Packing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T12%3A29%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advances%20in%20Random%20Matrix%20Theory,%20Zeta%20Functions,%20and%20Sphere%20Packing&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Hales,%20T.%20C.&rft.date=2000-11-21&rft.volume=97&rft.issue=24&rft.spage=12963&rft.epage=12964&rft.pages=12963-12964&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.220396097&rft_dat=%3Cjstor_cross%3E123637%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c488t-9ebb94f5d639bd611ad7f18fcaa531afd1b0e496b8b2860eb71c908d683ca6c03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201355171&rft_id=info:pmid/11058156&rft_jstor_id=123637&rfr_iscdi=true |