Loading…

Advances in Random Matrix Theory, Zeta Functions, and Sphere Packing

Over four hundred years ago, Sir Walter Raleigh asked his mathematical assistant to find formulas for the number of cannonballs in regularly stacked piles. These investigations aroused the curiosity of the astronomer Johannes Kepler and led to a problem that has gone centuries without a solution: wh...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2000-11, Vol.97 (24), p.12963-12964
Main Authors: Hales, T. C., Sarnak, P., Pugh, M. C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c488t-9ebb94f5d639bd611ad7f18fcaa531afd1b0e496b8b2860eb71c908d683ca6c03
cites cdi_FETCH-LOGICAL-c488t-9ebb94f5d639bd611ad7f18fcaa531afd1b0e496b8b2860eb71c908d683ca6c03
container_end_page 12964
container_issue 24
container_start_page 12963
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 97
creator Hales, T. C.
Sarnak, P.
Pugh, M. C.
description Over four hundred years ago, Sir Walter Raleigh asked his mathematical assistant to find formulas for the number of cannonballs in regularly stacked piles. These investigations aroused the curiosity of the astronomer Johannes Kepler and led to a problem that has gone centuries without a solution: why is the familiar cannonball stack the most efficient arrangement possible? Here we discuss the solution that Hales found in 1998. Almost every part of the 282-page proof relies on long computer verifications. Random matrix theory was developed by physicists to describe the spectra of complex nuclei. In particular, the statistical fluctuations of the eigenvalues ("the energy levels") follow certain universal laws based on symmetry types. We describe these and then discuss the remarkable appearance of these laws for zeros of the Riemann zeta function (which is the generating function for prime numbers and is the last special function from the last century that is not understood today.) Explaining this phenomenon is a central problem. These topics are distinct, so we present them separately with their own introductory remarks.
doi_str_mv 10.1073/pnas.220396097
format article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_220396097</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>123637</jstor_id><sourcerecordid>123637</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-9ebb94f5d639bd611ad7f18fcaa531afd1b0e496b8b2860eb71c908d683ca6c03</originalsourceid><addsrcrecordid>eNp90TtvFDEUBWALgcgmoaVBglEKRJFZrh_jh0QTBQJIiUAQGhrL4_FkZ5m1F9sTJf8er3ZJgILKxf2Ofa2D0FMMcwyCvl57k-aEAFUclHiAZhgUrjlT8BDNAIioJSNsD-2ntAQA1Uh4jPYwhkbihs_Q25Pu2njrUjX46ovxXVhVFybH4aa6XLgQb4-r7y6b6mzyNg_Bp-OqoOrreuGiqz4b-2PwV4foUW_G5J7szgP07ezd5emH-vzT-4-nJ-e1ZVLmWrm2VaxvOk5V23GMTSd6LHtrTEOx6TvcgmOKt7IlkoNrBbYKZMcltYZboAfozfbe9dSuXGedz9GMeh2HlYm3OphB_z3xw0JfhWtNGQhZ4i938Rh-Ti5lvRqSdeNovAtT0oIwSpTiBR79A5dhir58TRPAtGmwwAXNt8jGkFJ0_d0eGPSmG73pRt91UwLP_9z-nu_KKODFDmyCv8dKaMI0JmWvIl79X-h-GsfsbnKhz7Z0mXKI948RyqmgvwBQNawU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201355171</pqid></control><display><type>article</type><title>Advances in Random Matrix Theory, Zeta Functions, and Sphere Packing</title><source>Open Access: PubMed Central</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Hales, T. C. ; Sarnak, P. ; Pugh, M. C.</creator><creatorcontrib>Hales, T. C. ; Sarnak, P. ; Pugh, M. C.</creatorcontrib><description>Over four hundred years ago, Sir Walter Raleigh asked his mathematical assistant to find formulas for the number of cannonballs in regularly stacked piles. These investigations aroused the curiosity of the astronomer Johannes Kepler and led to a problem that has gone centuries without a solution: why is the familiar cannonball stack the most efficient arrangement possible? Here we discuss the solution that Hales found in 1998. Almost every part of the 282-page proof relies on long computer verifications. Random matrix theory was developed by physicists to describe the spectra of complex nuclei. In particular, the statistical fluctuations of the eigenvalues ("the energy levels") follow certain universal laws based on symmetry types. We describe these and then discuss the remarkable appearance of these laws for zeros of the Riemann zeta function (which is the generating function for prime numbers and is the last special function from the last century that is not understood today.) Explaining this phenomenon is a central problem. These topics are distinct, so we present them separately with their own introductory remarks.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.220396097</identifier><identifier>PMID: 11058156</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>Cannonballs ; Eigenvalues ; Family law ; Fractions ; From the Academy ; From the Academy: Frontiers of Science Symposium ; Mathematical functions ; Mathematics ; Matrix theory ; Statistics ; Symmetry ; Zero</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2000-11, Vol.97 (24), p.12963-12964</ispartof><rights>Copyright 1993-2000 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Nov 21, 2000</rights><rights>Copyright © 2000, The National Academy of Sciences 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-9ebb94f5d639bd611ad7f18fcaa531afd1b0e496b8b2860eb71c908d683ca6c03</citedby><cites>FETCH-LOGICAL-c488t-9ebb94f5d639bd611ad7f18fcaa531afd1b0e496b8b2860eb71c908d683ca6c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/97/24.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/123637$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/123637$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11058156$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hales, T. C.</creatorcontrib><creatorcontrib>Sarnak, P.</creatorcontrib><creatorcontrib>Pugh, M. C.</creatorcontrib><title>Advances in Random Matrix Theory, Zeta Functions, and Sphere Packing</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Over four hundred years ago, Sir Walter Raleigh asked his mathematical assistant to find formulas for the number of cannonballs in regularly stacked piles. These investigations aroused the curiosity of the astronomer Johannes Kepler and led to a problem that has gone centuries without a solution: why is the familiar cannonball stack the most efficient arrangement possible? Here we discuss the solution that Hales found in 1998. Almost every part of the 282-page proof relies on long computer verifications. Random matrix theory was developed by physicists to describe the spectra of complex nuclei. In particular, the statistical fluctuations of the eigenvalues ("the energy levels") follow certain universal laws based on symmetry types. We describe these and then discuss the remarkable appearance of these laws for zeros of the Riemann zeta function (which is the generating function for prime numbers and is the last special function from the last century that is not understood today.) Explaining this phenomenon is a central problem. These topics are distinct, so we present them separately with their own introductory remarks.</description><subject>Cannonballs</subject><subject>Eigenvalues</subject><subject>Family law</subject><subject>Fractions</subject><subject>From the Academy</subject><subject>From the Academy: Frontiers of Science Symposium</subject><subject>Mathematical functions</subject><subject>Mathematics</subject><subject>Matrix theory</subject><subject>Statistics</subject><subject>Symmetry</subject><subject>Zero</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNp90TtvFDEUBWALgcgmoaVBglEKRJFZrh_jh0QTBQJIiUAQGhrL4_FkZ5m1F9sTJf8er3ZJgILKxf2Ofa2D0FMMcwyCvl57k-aEAFUclHiAZhgUrjlT8BDNAIioJSNsD-2ntAQA1Uh4jPYwhkbihs_Q25Pu2njrUjX46ovxXVhVFybH4aa6XLgQb4-r7y6b6mzyNg_Bp-OqoOrreuGiqz4b-2PwV4foUW_G5J7szgP07ezd5emH-vzT-4-nJ-e1ZVLmWrm2VaxvOk5V23GMTSd6LHtrTEOx6TvcgmOKt7IlkoNrBbYKZMcltYZboAfozfbe9dSuXGedz9GMeh2HlYm3OphB_z3xw0JfhWtNGQhZ4i938Rh-Ti5lvRqSdeNovAtT0oIwSpTiBR79A5dhir58TRPAtGmwwAXNt8jGkFJ0_d0eGPSmG73pRt91UwLP_9z-nu_KKODFDmyCv8dKaMI0JmWvIl79X-h-GsfsbnKhz7Z0mXKI948RyqmgvwBQNawU</recordid><startdate>20001121</startdate><enddate>20001121</enddate><creator>Hales, T. C.</creator><creator>Sarnak, P.</creator><creator>Pugh, M. C.</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><general>The National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20001121</creationdate><title>Advances in Random Matrix Theory, Zeta Functions, and Sphere Packing</title><author>Hales, T. C. ; Sarnak, P. ; Pugh, M. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-9ebb94f5d639bd611ad7f18fcaa531afd1b0e496b8b2860eb71c908d683ca6c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Cannonballs</topic><topic>Eigenvalues</topic><topic>Family law</topic><topic>Fractions</topic><topic>From the Academy</topic><topic>From the Academy: Frontiers of Science Symposium</topic><topic>Mathematical functions</topic><topic>Mathematics</topic><topic>Matrix theory</topic><topic>Statistics</topic><topic>Symmetry</topic><topic>Zero</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hales, T. C.</creatorcontrib><creatorcontrib>Sarnak, P.</creatorcontrib><creatorcontrib>Pugh, M. C.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hales, T. C.</au><au>Sarnak, P.</au><au>Pugh, M. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advances in Random Matrix Theory, Zeta Functions, and Sphere Packing</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2000-11-21</date><risdate>2000</risdate><volume>97</volume><issue>24</issue><spage>12963</spage><epage>12964</epage><pages>12963-12964</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Over four hundred years ago, Sir Walter Raleigh asked his mathematical assistant to find formulas for the number of cannonballs in regularly stacked piles. These investigations aroused the curiosity of the astronomer Johannes Kepler and led to a problem that has gone centuries without a solution: why is the familiar cannonball stack the most efficient arrangement possible? Here we discuss the solution that Hales found in 1998. Almost every part of the 282-page proof relies on long computer verifications. Random matrix theory was developed by physicists to describe the spectra of complex nuclei. In particular, the statistical fluctuations of the eigenvalues ("the energy levels") follow certain universal laws based on symmetry types. We describe these and then discuss the remarkable appearance of these laws for zeros of the Riemann zeta function (which is the generating function for prime numbers and is the last special function from the last century that is not understood today.) Explaining this phenomenon is a central problem. These topics are distinct, so we present them separately with their own introductory remarks.</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>11058156</pmid><doi>10.1073/pnas.220396097</doi><tpages>2</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2000-11, Vol.97 (24), p.12963-12964
issn 0027-8424
1091-6490
language eng
recordid cdi_crossref_primary_10_1073_pnas_220396097
source Open Access: PubMed Central; JSTOR Archival Journals and Primary Sources Collection
subjects Cannonballs
Eigenvalues
Family law
Fractions
From the Academy
From the Academy: Frontiers of Science Symposium
Mathematical functions
Mathematics
Matrix theory
Statistics
Symmetry
Zero
title Advances in Random Matrix Theory, Zeta Functions, and Sphere Packing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T12%3A29%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advances%20in%20Random%20Matrix%20Theory,%20Zeta%20Functions,%20and%20Sphere%20Packing&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Hales,%20T.%20C.&rft.date=2000-11-21&rft.volume=97&rft.issue=24&rft.spage=12963&rft.epage=12964&rft.pages=12963-12964&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.220396097&rft_dat=%3Cjstor_cross%3E123637%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c488t-9ebb94f5d639bd611ad7f18fcaa531afd1b0e496b8b2860eb71c908d683ca6c03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201355171&rft_id=info:pmid/11058156&rft_jstor_id=123637&rfr_iscdi=true