Loading…

Multiple Calcium Channels Mediate Neurotransmitter Release from Peripheral Neurons

We examined the effects of dihydropyridine drugs on evoked neurotransmitter release from cultured neonatal rat sensory and sympathetic neurons. Depolarization with K+-rich solutions increased the release of substance P from cultured sensory neurons. This release was enhanced by BAY K8644 and (+)-202...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 1986-09, Vol.83 (17), p.6656-6659
Main Authors: Perney, Teresa M., Hirning, Lane D., Leeman, Susan E., Miller, Richard J.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We examined the effects of dihydropyridine drugs on evoked neurotransmitter release from cultured neonatal rat sensory and sympathetic neurons. Depolarization with K+-rich solutions increased the release of substance P from cultured sensory neurons. This release was enhanced by BAY K8644 and (+)-202791 and was blocked by a variety of other dihydropyridines including (-)-202791, by Co2+, or in Ca2+-free solutions. K+-rich solutions also stimulated the release of [3H]norepinephrine from cultured sympathetic neurons. This release was also completely blocked by Co2+ or in Ca2+-free solution. In contrast to the situation in sensory neurons, however, the evoked release of [3H]norepinephrine was completely resistant to the blocking effects of dihydropyridine such as nimodipine. However, BAY K8644 was able to enhance the evoked release of [3H]norepinephrine, and this enhancement was blocked by nimodipine. These results are discussed in relation to the possible participation of multiple types of calcium channels in the release of neurotransmitters.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.83.17.6656