Loading…

Role of Coupling Entropy in Establishing the Nature and Magnitude of Allosteric Response

The coupling free energy between an allosteric ligand and a substrate, Δ Gax, is an explicit measure of the nature as well as the magnitude of impact that an allosteric ligand has on the binding of the substrate ligand to the enzyme, with positive values indicating inhibition and negative values ind...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 1989-06, Vol.86 (11), p.4032-4036
Main Authors: Reinhart, Gregory D., Hartleip, Sharon B., Symcox, Marina M.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c490t-1dda03fe1c0a0e269b1838e163742fe559fa47cb665b1bd891f2fc4de5c83b6e3
cites
container_end_page 4036
container_issue 11
container_start_page 4032
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 86
creator Reinhart, Gregory D.
Hartleip, Sharon B.
Symcox, Marina M.
description The coupling free energy between an allosteric ligand and a substrate, Δ Gax, is an explicit measure of the nature as well as the magnitude of impact that an allosteric ligand has on the binding of the substrate ligand to the enzyme, with positive values indicating inhibition and negative values indicating activation. By measuring the variation with temperature of the coupling free energy between the allosteric ligand and the substrate, it is possible to determine the enthalpic and entropic components that give rise to the coupling free energy. We have performed this analysis on two different K-type allosteric systems: the allosteric inhibition of rat liver phosphofructokinase by MgATP, and the allosteric activation of beef heart NAD+-dependent isocitrate dehydrogenase by ADP. In both cases the coupling free energy arises as the net result of opposing enthalpic and entropic components, with the coupling enthalpy (Δ Hax) favoring activation and the coupling entropy (Δ Sax) favoring inhibition. For phosphofructokinase at 25 degrees C, the absolute value of TΔ Saxis greater than the absolute value of Δ Hax, and net inhibition of rat liver phosphofructokinase by MgATP is realized. For isocitrate dehydrogenase, Δ Haxdominates; however, the net activation is substantially mitigated by the magnitude of TΔ Sax. Hence, the coupling entropy plays an important role in establishing both the nature and magnitude of the allosteric response. We hypothesize that the negative coupling entropy arises from the particular constraint placed upon the internal dynamical properties of the enzyme by the simultaneous binding of both allosteric and substrate ligands.
doi_str_mv 10.1073/pnas.86.11.4032
format article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_86_11_4032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>33617</jstor_id><sourcerecordid>33617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-1dda03fe1c0a0e269b1838e163742fe559fa47cb665b1bd891f2fc4de5c83b6e3</originalsourceid><addsrcrecordid>eNp9kd2L1DAUxYMo67j6LAhKH0SfOpuvpumDD8swfsCqsCj4FtL0ZiZLpukmqbj_va1TB_fFp0DO79x7uAeh5wSvCa7ZxdDrtJZiTciaY0YfoBXBDSkFb_BDtMKY1qXklD9GT1K6wRg3lcRn6IxWlEsmVujHdfBQBFtswjh41--KbZ9jGO4K1xfblHXrXdrP_3kPxRedxwiF7rvis971Lo_dH_Ol9yFliM4U15CG0Cd4ih5Z7RM8W95z9P399tvmY3n19cOnzeVVaaaIuSRdpzGzQAzWGKhoWiKZBCJYzamFqmqs5rVphaha0nayIZZawzuojGStAHaO3h3nDmN7gM7AFF97NUR30PFOBe3UfaV3e7ULPxWVNZN08r9Z_DHcjpCyOrhkwHvdQxiTIhWllNfVBF4cQRNDShHsaQfBau5CzV0oKRQhau5icrz8N9qJX44_6a8XXSejvY26Ny6dMNHQijfz4lcLNs__q97b8_a_gLKj9xl-5Yl8cSRvUg7xhDImSM1-A1UHtOI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15222475</pqid></control><display><type>article</type><title>Role of Coupling Entropy in Establishing the Nature and Magnitude of Allosteric Response</title><source>PubMed Central</source><source>JSTOR</source><creator>Reinhart, Gregory D. ; Hartleip, Sharon B. ; Symcox, Marina M.</creator><creatorcontrib>Reinhart, Gregory D. ; Hartleip, Sharon B. ; Symcox, Marina M.</creatorcontrib><description>The coupling free energy between an allosteric ligand and a substrate, Δ Gax, is an explicit measure of the nature as well as the magnitude of impact that an allosteric ligand has on the binding of the substrate ligand to the enzyme, with positive values indicating inhibition and negative values indicating activation. By measuring the variation with temperature of the coupling free energy between the allosteric ligand and the substrate, it is possible to determine the enthalpic and entropic components that give rise to the coupling free energy. We have performed this analysis on two different K-type allosteric systems: the allosteric inhibition of rat liver phosphofructokinase by MgATP, and the allosteric activation of beef heart NAD+-dependent isocitrate dehydrogenase by ADP. In both cases the coupling free energy arises as the net result of opposing enthalpic and entropic components, with the coupling enthalpy (Δ Hax) favoring activation and the coupling entropy (Δ Sax) favoring inhibition. For phosphofructokinase at 25 degrees C, the absolute value of TΔ Saxis greater than the absolute value of Δ Hax, and net inhibition of rat liver phosphofructokinase by MgATP is realized. For isocitrate dehydrogenase, Δ Haxdominates; however, the net activation is substantially mitigated by the magnitude of TΔ Sax. Hence, the coupling entropy plays an important role in establishing both the nature and magnitude of the allosteric response. We hypothesize that the negative coupling entropy arises from the particular constraint placed upon the internal dynamical properties of the enzyme by the simultaneous binding of both allosteric and substrate ligands.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.86.11.4032</identifier><identifier>PMID: 2524836</identifier><identifier>CODEN: PNASA6</identifier><language>eng</language><publisher>Washington, DC: National Academy of Sciences of the United States of America</publisher><subject>Allosteric Regulation ; Analytical, structural and metabolic biochemistry ; Animals ; Biochemistry ; Biological and medical sciences ; Dehydrogenases ; Entropy ; Enzyme substrates ; Enzymes ; Enzymes and enzyme inhibitors ; Free energy ; Fundamental and applied biological sciences. Psychology ; General aspects, investigation methods ; isocitrate dehydrogenase (NAD super(+)) ; Isocitrates ; Kinetics ; Ligands ; Liver ; Liver - enzymology ; Logarithms ; Male ; Models, Theoretical ; Phosphofructokinase-1 - metabolism ; Rats ; Thermodynamics</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1989-06, Vol.86 (11), p.4032-4036</ispartof><rights>1990 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-1dda03fe1c0a0e269b1838e163742fe559fa47cb665b1bd891f2fc4de5c83b6e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/86/11.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/33617$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/33617$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53770,53772,58217,58450</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=6925495$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/2524836$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Reinhart, Gregory D.</creatorcontrib><creatorcontrib>Hartleip, Sharon B.</creatorcontrib><creatorcontrib>Symcox, Marina M.</creatorcontrib><title>Role of Coupling Entropy in Establishing the Nature and Magnitude of Allosteric Response</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The coupling free energy between an allosteric ligand and a substrate, Δ Gax, is an explicit measure of the nature as well as the magnitude of impact that an allosteric ligand has on the binding of the substrate ligand to the enzyme, with positive values indicating inhibition and negative values indicating activation. By measuring the variation with temperature of the coupling free energy between the allosteric ligand and the substrate, it is possible to determine the enthalpic and entropic components that give rise to the coupling free energy. We have performed this analysis on two different K-type allosteric systems: the allosteric inhibition of rat liver phosphofructokinase by MgATP, and the allosteric activation of beef heart NAD+-dependent isocitrate dehydrogenase by ADP. In both cases the coupling free energy arises as the net result of opposing enthalpic and entropic components, with the coupling enthalpy (Δ Hax) favoring activation and the coupling entropy (Δ Sax) favoring inhibition. For phosphofructokinase at 25 degrees C, the absolute value of TΔ Saxis greater than the absolute value of Δ Hax, and net inhibition of rat liver phosphofructokinase by MgATP is realized. For isocitrate dehydrogenase, Δ Haxdominates; however, the net activation is substantially mitigated by the magnitude of TΔ Sax. Hence, the coupling entropy plays an important role in establishing both the nature and magnitude of the allosteric response. We hypothesize that the negative coupling entropy arises from the particular constraint placed upon the internal dynamical properties of the enzyme by the simultaneous binding of both allosteric and substrate ligands.</description><subject>Allosteric Regulation</subject><subject>Analytical, structural and metabolic biochemistry</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Biological and medical sciences</subject><subject>Dehydrogenases</subject><subject>Entropy</subject><subject>Enzyme substrates</subject><subject>Enzymes</subject><subject>Enzymes and enzyme inhibitors</subject><subject>Free energy</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects, investigation methods</subject><subject>isocitrate dehydrogenase (NAD super(+))</subject><subject>Isocitrates</subject><subject>Kinetics</subject><subject>Ligands</subject><subject>Liver</subject><subject>Liver - enzymology</subject><subject>Logarithms</subject><subject>Male</subject><subject>Models, Theoretical</subject><subject>Phosphofructokinase-1 - metabolism</subject><subject>Rats</subject><subject>Thermodynamics</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><recordid>eNp9kd2L1DAUxYMo67j6LAhKH0SfOpuvpumDD8swfsCqsCj4FtL0ZiZLpukmqbj_va1TB_fFp0DO79x7uAeh5wSvCa7ZxdDrtJZiTciaY0YfoBXBDSkFb_BDtMKY1qXklD9GT1K6wRg3lcRn6IxWlEsmVujHdfBQBFtswjh41--KbZ9jGO4K1xfblHXrXdrP_3kPxRedxwiF7rvis971Lo_dH_Ol9yFliM4U15CG0Cd4ih5Z7RM8W95z9P399tvmY3n19cOnzeVVaaaIuSRdpzGzQAzWGKhoWiKZBCJYzamFqmqs5rVphaha0nayIZZawzuojGStAHaO3h3nDmN7gM7AFF97NUR30PFOBe3UfaV3e7ULPxWVNZN08r9Z_DHcjpCyOrhkwHvdQxiTIhWllNfVBF4cQRNDShHsaQfBau5CzV0oKRQhau5icrz8N9qJX44_6a8XXSejvY26Ny6dMNHQijfz4lcLNs__q97b8_a_gLKj9xl-5Yl8cSRvUg7xhDImSM1-A1UHtOI</recordid><startdate>19890601</startdate><enddate>19890601</enddate><creator>Reinhart, Gregory D.</creator><creator>Hartleip, Sharon B.</creator><creator>Symcox, Marina M.</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M81</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>19890601</creationdate><title>Role of Coupling Entropy in Establishing the Nature and Magnitude of Allosteric Response</title><author>Reinhart, Gregory D. ; Hartleip, Sharon B. ; Symcox, Marina M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-1dda03fe1c0a0e269b1838e163742fe559fa47cb665b1bd891f2fc4de5c83b6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Allosteric Regulation</topic><topic>Analytical, structural and metabolic biochemistry</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Biological and medical sciences</topic><topic>Dehydrogenases</topic><topic>Entropy</topic><topic>Enzyme substrates</topic><topic>Enzymes</topic><topic>Enzymes and enzyme inhibitors</topic><topic>Free energy</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects, investigation methods</topic><topic>isocitrate dehydrogenase (NAD super(+))</topic><topic>Isocitrates</topic><topic>Kinetics</topic><topic>Ligands</topic><topic>Liver</topic><topic>Liver - enzymology</topic><topic>Logarithms</topic><topic>Male</topic><topic>Models, Theoretical</topic><topic>Phosphofructokinase-1 - metabolism</topic><topic>Rats</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reinhart, Gregory D.</creatorcontrib><creatorcontrib>Hartleip, Sharon B.</creatorcontrib><creatorcontrib>Symcox, Marina M.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biochemistry Abstracts 3</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reinhart, Gregory D.</au><au>Hartleip, Sharon B.</au><au>Symcox, Marina M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of Coupling Entropy in Establishing the Nature and Magnitude of Allosteric Response</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1989-06-01</date><risdate>1989</risdate><volume>86</volume><issue>11</issue><spage>4032</spage><epage>4036</epage><pages>4032-4036</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><coden>PNASA6</coden><abstract>The coupling free energy between an allosteric ligand and a substrate, Δ Gax, is an explicit measure of the nature as well as the magnitude of impact that an allosteric ligand has on the binding of the substrate ligand to the enzyme, with positive values indicating inhibition and negative values indicating activation. By measuring the variation with temperature of the coupling free energy between the allosteric ligand and the substrate, it is possible to determine the enthalpic and entropic components that give rise to the coupling free energy. We have performed this analysis on two different K-type allosteric systems: the allosteric inhibition of rat liver phosphofructokinase by MgATP, and the allosteric activation of beef heart NAD+-dependent isocitrate dehydrogenase by ADP. In both cases the coupling free energy arises as the net result of opposing enthalpic and entropic components, with the coupling enthalpy (Δ Hax) favoring activation and the coupling entropy (Δ Sax) favoring inhibition. For phosphofructokinase at 25 degrees C, the absolute value of TΔ Saxis greater than the absolute value of Δ Hax, and net inhibition of rat liver phosphofructokinase by MgATP is realized. For isocitrate dehydrogenase, Δ Haxdominates; however, the net activation is substantially mitigated by the magnitude of TΔ Sax. Hence, the coupling entropy plays an important role in establishing both the nature and magnitude of the allosteric response. We hypothesize that the negative coupling entropy arises from the particular constraint placed upon the internal dynamical properties of the enzyme by the simultaneous binding of both allosteric and substrate ligands.</abstract><cop>Washington, DC</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>2524836</pmid><doi>10.1073/pnas.86.11.4032</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 1989-06, Vol.86 (11), p.4032-4036
issn 0027-8424
1091-6490
language eng
recordid cdi_crossref_primary_10_1073_pnas_86_11_4032
source PubMed Central; JSTOR
subjects Allosteric Regulation
Analytical, structural and metabolic biochemistry
Animals
Biochemistry
Biological and medical sciences
Dehydrogenases
Entropy
Enzyme substrates
Enzymes
Enzymes and enzyme inhibitors
Free energy
Fundamental and applied biological sciences. Psychology
General aspects, investigation methods
isocitrate dehydrogenase (NAD super(+))
Isocitrates
Kinetics
Ligands
Liver
Liver - enzymology
Logarithms
Male
Models, Theoretical
Phosphofructokinase-1 - metabolism
Rats
Thermodynamics
title Role of Coupling Entropy in Establishing the Nature and Magnitude of Allosteric Response
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A35%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20Coupling%20Entropy%20in%20Establishing%20the%20Nature%20and%20Magnitude%20of%20Allosteric%20Response&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Reinhart,%20Gregory%20D.&rft.date=1989-06-01&rft.volume=86&rft.issue=11&rft.spage=4032&rft.epage=4036&rft.pages=4032-4036&rft.issn=0027-8424&rft.eissn=1091-6490&rft.coden=PNASA6&rft_id=info:doi/10.1073/pnas.86.11.4032&rft_dat=%3Cjstor_cross%3E33617%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c490t-1dda03fe1c0a0e269b1838e163742fe559fa47cb665b1bd891f2fc4de5c83b6e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=15222475&rft_id=info:pmid/2524836&rft_jstor_id=33617&rfr_iscdi=true