Loading…
2'-O-Alkyl Oligoribonucleotides as Antisense Probes
2'-O-Methyl oligoribonucleotides have recently been introduced as antisense probes for studying RNA processing and for affinity purification of RNA-protein complexes. To identify RNA analogues with improved properties for antisense analysis, 2'-O-alkyl oligoribonucleotides were synthesized...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 1990-10, Vol.87 (19), p.7747-7751 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | 2'-O-Methyl oligoribonucleotides have recently been introduced as antisense probes for studying RNA processing and for affinity purification of RNA-protein complexes. To identify RNA analogues with improved properties for antisense analysis, 2'-O-alkyl oligoribonucleotides were synthesized in which the alkyl moiety was either the three-carbon linear allyl group or the five-carbon branched 3,3-dimethylallyl group. Both these analogues were found to be completely resistant to degradation by either DNA- or RNA-specific nucleases. Use of biotinylated derivatives of the probes to affinity-select ribonucleoprotein particles from crude HeLa cell nuclear extracts showed that the presence of the bulky 3,3-dimethylallyl group significantly reduces affinity selection, whereas the allyl derivative binds rapidly and stably to targeted sequences and affinity-selects efficiently. The allyl derivatives also showed an increase in the level of specific binding to targeted sequences compared with 2'-O-methyl probes of identical sequence. These properties indicate that the 2'-O-allyl oligoribonucleotides are particularly well suited for use as antisense probes. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.87.19.7747 |