Loading…

Intrasarcomere [Ca2+] Gradients in Ventricular Myocytes Revealed by High Speed Digital Imaging Microscopy

Cardiac muscle contraction is triggered by a small and brief Ca2+ entry across the t-tubular membranes, which is believed to be locally amplified by release of Ca2+ from the adjacent junctional sarcoplasmic reticulum (SR). As Ca2+ diffusion is thought to be markedly attenuated in cells, it has been...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 1996-05, Vol.93 (11), p.5413-5418
Main Authors: Isenberg, Gerrit, Etter, Elaine F., Wendt-Gallitelli, Maria-Flora, Schiefer, Alfred, Carrington, Walter A., Tuft, Richard A., Fay, Fredric S.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c584t-cffdef68ff458c304577013450adf1a086ad8be5749de62b59a3c78b75997f1f3
cites
container_end_page 5418
container_issue 11
container_start_page 5413
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 93
creator Isenberg, Gerrit
Etter, Elaine F.
Wendt-Gallitelli, Maria-Flora
Schiefer, Alfred
Carrington, Walter A.
Tuft, Richard A.
Fay, Fredric S.
description Cardiac muscle contraction is triggered by a small and brief Ca2+ entry across the t-tubular membranes, which is believed to be locally amplified by release of Ca2+ from the adjacent junctional sarcoplasmic reticulum (SR). As Ca2+ diffusion is thought to be markedly attenuated in cells, it has been predicted that significant intrasarcomeric [Ca2+] gradients should exist during activation. To directly test for this, we measured [Ca2+] distribution in single cardiac myocytes using fluorescent [Ca2+] indicators and high speed, three-dimensional digital imaging microscopy and image deconvolution techniques. Steep cytosolic [Ca2+] gradients from the t-tubule region to the center of the sarcomere developed during the first 15 ms of systole. The steepness of these [Ca2+] gradients varied with treatments that altered Ca2+ release from internal stores. Electron probe microanalysis revealed a loss of Ca2+ from the junctional SR and an accumulation, principally in the A-band during activation. We propose that the prolonged existence of [Ca2+] gradients within the sarcomere reflects the relatively long period of Ca2+ release from the SR, the localization of Ca2+ binding sites and Ca2+ sinks remote from sites of release, and diffusion limitations within the sarcomere. The large [Ca2+] transient near the t-tubular/junctional SR membranes is postulated to explain numerous features of excitation-contraction coupling in cardiac muscle.
doi_str_mv 10.1073/pnas.93.11.5413
format article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1073_pnas_93_11_5413</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>39446</jstor_id><sourcerecordid>39446</sourcerecordid><originalsourceid>FETCH-LOGICAL-c584t-cffdef68ff458c304577013450adf1a086ad8be5749de62b59a3c78b75997f1f3</originalsourceid><addsrcrecordid>eNqFkd2L1DAUxYso67j6LAhK8EEfpLNJkzQJ-CKj7g7sIvj1IhLSNOlmaJuatIv9702Zcfx40Keby_mdy809WfYQwTWCDJ8NvYprgdcIrSlB-Fa2QlCgvCQC3s5WEBYs56Qgd7N7Me4ghIJyeJKd8JJgysUqc9t-DCqqoH1nggFfNqp48RWcB1U7048RuB58To_g9NSqAK5mr-fRRPDe3BjVmhpUM7hwzTX4MJjUvXaNG1ULtp1qXN-AK6eDj9oP8_3sjlVtNA8O9TT79PbNx81FfvnufLt5dZlrysmYa2trY0tuLaFcY0goYxBhQqGqLVKQl6rmlaGMiNqURUWFwprxilEhmEUWn2Yv93OHqepMrZflVSuH4DoVZumVk38qvbuWjb-RWBQlTPZnB3vw3yYTR9m5qE3bqt74KUrGIeZY_B9ElDJOBUrg07_AnZ9Cn24gC4gKIUrMEnS2h5ZzxWDscWEE5ZK0XJKWAkuE5JJ0cjz-_Z9H_hBt0p8f9MX4U_01QNqpbUfzfUzkk3-SCXi0B3Zx9OFIYEFIiX8ADFHG5w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201299637</pqid></control><display><type>article</type><title>Intrasarcomere [Ca2+] Gradients in Ventricular Myocytes Revealed by High Speed Digital Imaging Microscopy</title><source>JSTOR Archival Journals and Primary Sources Collection【Remote access available】</source><source>NCBI_PubMed Central(免费)</source><creator>Isenberg, Gerrit ; Etter, Elaine F. ; Wendt-Gallitelli, Maria-Flora ; Schiefer, Alfred ; Carrington, Walter A. ; Tuft, Richard A. ; Fay, Fredric S.</creator><creatorcontrib>Isenberg, Gerrit ; Etter, Elaine F. ; Wendt-Gallitelli, Maria-Flora ; Schiefer, Alfred ; Carrington, Walter A. ; Tuft, Richard A. ; Fay, Fredric S.</creatorcontrib><description>Cardiac muscle contraction is triggered by a small and brief Ca2+ entry across the t-tubular membranes, which is believed to be locally amplified by release of Ca2+ from the adjacent junctional sarcoplasmic reticulum (SR). As Ca2+ diffusion is thought to be markedly attenuated in cells, it has been predicted that significant intrasarcomeric [Ca2+] gradients should exist during activation. To directly test for this, we measured [Ca2+] distribution in single cardiac myocytes using fluorescent [Ca2+] indicators and high speed, three-dimensional digital imaging microscopy and image deconvolution techniques. Steep cytosolic [Ca2+] gradients from the t-tubule region to the center of the sarcomere developed during the first 15 ms of systole. The steepness of these [Ca2+] gradients varied with treatments that altered Ca2+ release from internal stores. Electron probe microanalysis revealed a loss of Ca2+ from the junctional SR and an accumulation, principally in the A-band during activation. We propose that the prolonged existence of [Ca2+] gradients within the sarcomere reflects the relatively long period of Ca2+ release from the SR, the localization of Ca2+ binding sites and Ca2+ sinks remote from sites of release, and diffusion limitations within the sarcomere. The large [Ca2+] transient near the t-tubular/junctional SR membranes is postulated to explain numerous features of excitation-contraction coupling in cardiac muscle.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.93.11.5413</identifier><identifier>PMID: 8643589</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>Animals ; Biochemistry ; Calcium ; Calcium - metabolism ; Cell lines ; Cellular biology ; Depolarization ; Electron Probe Microanalysis - instrumentation ; Electron Probe Microanalysis - methods ; Fluorescence ; Fluorescent Dyes ; Guinea Pigs ; Heart ; Heart Ventricles ; Imaging ; In Vitro Techniques ; Kinetics ; Models, Structural ; Myocardium ; Myocardium - metabolism ; Myocardium - ultrastructure ; Parallel lines ; Sarcomeres ; Sarcomeres - metabolism ; Sarcomeres - ultrastructure ; Sarcoplasmic Reticulum - metabolism ; Sarcoplasmic Reticulum - ultrastructure ; Three dimensional imaging ; Time Factors ; Wavelengths</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1996-05, Vol.93 (11), p.5413-5418</ispartof><rights>Copyright 1996 National Academy of Sciences</rights><rights>Copyright National Academy of Sciences May 28, 1996</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c584t-cffdef68ff458c304577013450adf1a086ad8be5749de62b59a3c78b75997f1f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/93/11.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/39446$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/39446$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774,58219,58452</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8643589$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Isenberg, Gerrit</creatorcontrib><creatorcontrib>Etter, Elaine F.</creatorcontrib><creatorcontrib>Wendt-Gallitelli, Maria-Flora</creatorcontrib><creatorcontrib>Schiefer, Alfred</creatorcontrib><creatorcontrib>Carrington, Walter A.</creatorcontrib><creatorcontrib>Tuft, Richard A.</creatorcontrib><creatorcontrib>Fay, Fredric S.</creatorcontrib><title>Intrasarcomere [Ca2+] Gradients in Ventricular Myocytes Revealed by High Speed Digital Imaging Microscopy</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Cardiac muscle contraction is triggered by a small and brief Ca2+ entry across the t-tubular membranes, which is believed to be locally amplified by release of Ca2+ from the adjacent junctional sarcoplasmic reticulum (SR). As Ca2+ diffusion is thought to be markedly attenuated in cells, it has been predicted that significant intrasarcomeric [Ca2+] gradients should exist during activation. To directly test for this, we measured [Ca2+] distribution in single cardiac myocytes using fluorescent [Ca2+] indicators and high speed, three-dimensional digital imaging microscopy and image deconvolution techniques. Steep cytosolic [Ca2+] gradients from the t-tubule region to the center of the sarcomere developed during the first 15 ms of systole. The steepness of these [Ca2+] gradients varied with treatments that altered Ca2+ release from internal stores. Electron probe microanalysis revealed a loss of Ca2+ from the junctional SR and an accumulation, principally in the A-band during activation. We propose that the prolonged existence of [Ca2+] gradients within the sarcomere reflects the relatively long period of Ca2+ release from the SR, the localization of Ca2+ binding sites and Ca2+ sinks remote from sites of release, and diffusion limitations within the sarcomere. The large [Ca2+] transient near the t-tubular/junctional SR membranes is postulated to explain numerous features of excitation-contraction coupling in cardiac muscle.</description><subject>Animals</subject><subject>Biochemistry</subject><subject>Calcium</subject><subject>Calcium - metabolism</subject><subject>Cell lines</subject><subject>Cellular biology</subject><subject>Depolarization</subject><subject>Electron Probe Microanalysis - instrumentation</subject><subject>Electron Probe Microanalysis - methods</subject><subject>Fluorescence</subject><subject>Fluorescent Dyes</subject><subject>Guinea Pigs</subject><subject>Heart</subject><subject>Heart Ventricles</subject><subject>Imaging</subject><subject>In Vitro Techniques</subject><subject>Kinetics</subject><subject>Models, Structural</subject><subject>Myocardium</subject><subject>Myocardium - metabolism</subject><subject>Myocardium - ultrastructure</subject><subject>Parallel lines</subject><subject>Sarcomeres</subject><subject>Sarcomeres - metabolism</subject><subject>Sarcomeres - ultrastructure</subject><subject>Sarcoplasmic Reticulum - metabolism</subject><subject>Sarcoplasmic Reticulum - ultrastructure</subject><subject>Three dimensional imaging</subject><subject>Time Factors</subject><subject>Wavelengths</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNqFkd2L1DAUxYso67j6LAhK8EEfpLNJkzQJ-CKj7g7sIvj1IhLSNOlmaJuatIv9702Zcfx40Keby_mdy809WfYQwTWCDJ8NvYprgdcIrSlB-Fa2QlCgvCQC3s5WEBYs56Qgd7N7Me4ghIJyeJKd8JJgysUqc9t-DCqqoH1nggFfNqp48RWcB1U7048RuB58To_g9NSqAK5mr-fRRPDe3BjVmhpUM7hwzTX4MJjUvXaNG1ULtp1qXN-AK6eDj9oP8_3sjlVtNA8O9TT79PbNx81FfvnufLt5dZlrysmYa2trY0tuLaFcY0goYxBhQqGqLVKQl6rmlaGMiNqURUWFwprxilEhmEUWn2Yv93OHqepMrZflVSuH4DoVZumVk38qvbuWjb-RWBQlTPZnB3vw3yYTR9m5qE3bqt74KUrGIeZY_B9ElDJOBUrg07_AnZ9Cn24gC4gKIUrMEnS2h5ZzxWDscWEE5ZK0XJKWAkuE5JJ0cjz-_Z9H_hBt0p8f9MX4U_01QNqpbUfzfUzkk3-SCXi0B3Zx9OFIYEFIiX8ADFHG5w</recordid><startdate>19960528</startdate><enddate>19960528</enddate><creator>Isenberg, Gerrit</creator><creator>Etter, Elaine F.</creator><creator>Wendt-Gallitelli, Maria-Flora</creator><creator>Schiefer, Alfred</creator><creator>Carrington, Walter A.</creator><creator>Tuft, Richard A.</creator><creator>Fay, Fredric S.</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19960528</creationdate><title>Intrasarcomere [Ca2+] Gradients in Ventricular Myocytes Revealed by High Speed Digital Imaging Microscopy</title><author>Isenberg, Gerrit ; Etter, Elaine F. ; Wendt-Gallitelli, Maria-Flora ; Schiefer, Alfred ; Carrington, Walter A. ; Tuft, Richard A. ; Fay, Fredric S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c584t-cffdef68ff458c304577013450adf1a086ad8be5749de62b59a3c78b75997f1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Animals</topic><topic>Biochemistry</topic><topic>Calcium</topic><topic>Calcium - metabolism</topic><topic>Cell lines</topic><topic>Cellular biology</topic><topic>Depolarization</topic><topic>Electron Probe Microanalysis - instrumentation</topic><topic>Electron Probe Microanalysis - methods</topic><topic>Fluorescence</topic><topic>Fluorescent Dyes</topic><topic>Guinea Pigs</topic><topic>Heart</topic><topic>Heart Ventricles</topic><topic>Imaging</topic><topic>In Vitro Techniques</topic><topic>Kinetics</topic><topic>Models, Structural</topic><topic>Myocardium</topic><topic>Myocardium - metabolism</topic><topic>Myocardium - ultrastructure</topic><topic>Parallel lines</topic><topic>Sarcomeres</topic><topic>Sarcomeres - metabolism</topic><topic>Sarcomeres - ultrastructure</topic><topic>Sarcoplasmic Reticulum - metabolism</topic><topic>Sarcoplasmic Reticulum - ultrastructure</topic><topic>Three dimensional imaging</topic><topic>Time Factors</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Isenberg, Gerrit</creatorcontrib><creatorcontrib>Etter, Elaine F.</creatorcontrib><creatorcontrib>Wendt-Gallitelli, Maria-Flora</creatorcontrib><creatorcontrib>Schiefer, Alfred</creatorcontrib><creatorcontrib>Carrington, Walter A.</creatorcontrib><creatorcontrib>Tuft, Richard A.</creatorcontrib><creatorcontrib>Fay, Fredric S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Isenberg, Gerrit</au><au>Etter, Elaine F.</au><au>Wendt-Gallitelli, Maria-Flora</au><au>Schiefer, Alfred</au><au>Carrington, Walter A.</au><au>Tuft, Richard A.</au><au>Fay, Fredric S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intrasarcomere [Ca2+] Gradients in Ventricular Myocytes Revealed by High Speed Digital Imaging Microscopy</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1996-05-28</date><risdate>1996</risdate><volume>93</volume><issue>11</issue><spage>5413</spage><epage>5418</epage><pages>5413-5418</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Cardiac muscle contraction is triggered by a small and brief Ca2+ entry across the t-tubular membranes, which is believed to be locally amplified by release of Ca2+ from the adjacent junctional sarcoplasmic reticulum (SR). As Ca2+ diffusion is thought to be markedly attenuated in cells, it has been predicted that significant intrasarcomeric [Ca2+] gradients should exist during activation. To directly test for this, we measured [Ca2+] distribution in single cardiac myocytes using fluorescent [Ca2+] indicators and high speed, three-dimensional digital imaging microscopy and image deconvolution techniques. Steep cytosolic [Ca2+] gradients from the t-tubule region to the center of the sarcomere developed during the first 15 ms of systole. The steepness of these [Ca2+] gradients varied with treatments that altered Ca2+ release from internal stores. Electron probe microanalysis revealed a loss of Ca2+ from the junctional SR and an accumulation, principally in the A-band during activation. We propose that the prolonged existence of [Ca2+] gradients within the sarcomere reflects the relatively long period of Ca2+ release from the SR, the localization of Ca2+ binding sites and Ca2+ sinks remote from sites of release, and diffusion limitations within the sarcomere. The large [Ca2+] transient near the t-tubular/junctional SR membranes is postulated to explain numerous features of excitation-contraction coupling in cardiac muscle.</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>8643589</pmid><doi>10.1073/pnas.93.11.5413</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 1996-05, Vol.93 (11), p.5413-5418
issn 0027-8424
1091-6490
language eng
recordid cdi_crossref_primary_10_1073_pnas_93_11_5413
source JSTOR Archival Journals and Primary Sources Collection【Remote access available】; NCBI_PubMed Central(免费)
subjects Animals
Biochemistry
Calcium
Calcium - metabolism
Cell lines
Cellular biology
Depolarization
Electron Probe Microanalysis - instrumentation
Electron Probe Microanalysis - methods
Fluorescence
Fluorescent Dyes
Guinea Pigs
Heart
Heart Ventricles
Imaging
In Vitro Techniques
Kinetics
Models, Structural
Myocardium
Myocardium - metabolism
Myocardium - ultrastructure
Parallel lines
Sarcomeres
Sarcomeres - metabolism
Sarcomeres - ultrastructure
Sarcoplasmic Reticulum - metabolism
Sarcoplasmic Reticulum - ultrastructure
Three dimensional imaging
Time Factors
Wavelengths
title Intrasarcomere [Ca2+] Gradients in Ventricular Myocytes Revealed by High Speed Digital Imaging Microscopy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T07%3A34%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intrasarcomere%20%5BCa2+%5D%20Gradients%20in%20Ventricular%20Myocytes%20Revealed%20by%20High%20Speed%20Digital%20Imaging%20Microscopy&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Isenberg,%20Gerrit&rft.date=1996-05-28&rft.volume=93&rft.issue=11&rft.spage=5413&rft.epage=5418&rft.pages=5413-5418&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.93.11.5413&rft_dat=%3Cjstor_cross%3E39446%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c584t-cffdef68ff458c304577013450adf1a086ad8be5749de62b59a3c78b75997f1f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201299637&rft_id=info:pmid/8643589&rft_jstor_id=39446&rfr_iscdi=true