Loading…

Proteinase Inhibitor 6 Cannot Be Secreted, Which Suggests It Is a New Type of Cellular Serpin (∗)

We have recently described a new serine proteinase inhibitor, proteinase inhibitor 6 (PI-6). This serpin has features that suggest it may function intracellularly, but its close resemblance to ovalbumin serpins like plasminogen activator inhibitor 2 (PAI-2) raises the possibility that it is secreted...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 1996-01, Vol.271 (3), p.1605-1612
Main Authors: Scott, Fiona L., Coughlin, Paul B., Bird, Catherina, Cerruti, Loretta, Hayman, John A., Bird, Phillip
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We have recently described a new serine proteinase inhibitor, proteinase inhibitor 6 (PI-6). This serpin has features that suggest it may function intracellularly, but its close resemblance to ovalbumin serpins like plasminogen activator inhibitor 2 (PAI-2) raises the possibility that it is secreted to regulate an extracellular proteinase. To determine whether PI-6 is secreted, we have examined its cellular distribution by immunohistochemistry and have attempted to induce its release from platelets and from cultured cells. We find that PI-6 is present in endothelial and epithelial cells, but it is apparently cytoplasmic and it is not released from cells in response to phorbol ester, dibutyryl cAMP or tumor necrosis factor α treatment. It is also not released from activated platelets. The addition of a conventional signal peptide to the amino terminus of PI-6 directed its translocation into the endoplasmic reticulum (ER), resulting in glycosylation but not secretion of the molecule. By contrast, the addition of the same signal peptide to PAI-2 markedly enhanced its translocation and secretion. Glycosylated PI-6 was sequestered in the ER and was incapable of interacting with thrombin. The failure of PI-6 to move along the secretory pathway, and the loss of inhibitory function of ER-localized PI-6, demonstrates that unlike PAI-2, PI-6 is not naturally secreted. Taken together, these results suggest that PI-6 has evolved to fulfil an intracellular role and that it represents a new type of cellular serpin.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.271.3.1605