Loading…

Gender-specific Glycosylation of Human Glycodelin Affects Its Contraceptive Activity

We have recently demonstrated that a human amniotic fluid-derived glycoprotein, glycodelin-A (GdA; previously known as PP14 or PAEP), potently inhibits gamete binding in an established sperm-egg binding system and expresses immunosuppressive activities directed against a variety of different immune...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 1996-12, Vol.271 (50), p.32159-32167
Main Authors: Morris, Howard R., Dell, Anne, Easton, Richard L., Panico, Maria, Koistinen, Hannu, Koistinen, Riitta, Oehninger, Sergio, Patankar, Manish S., Seppala, Markku, Clark, Gary F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We have recently demonstrated that a human amniotic fluid-derived glycoprotein, glycodelin-A (GdA; previously known as PP14 or PAEP), potently inhibits gamete binding in an established sperm-egg binding system and expresses immunosuppressive activities directed against a variety of different immune cell types. GdA has high mannose-, hybrid-, and complex-type biantennary oligosaccharides including structures with fucosylated or sialylated N,N′-diacetyllactosediamine (GalNAcβ1-4GlcNAc) sequences, which are rare in other human glycoproteins. We now report the characterization of glycodelin-S (GdS). This is a human seminal plasma glycoprotein that is immunologically indistinguishable from GdA, but unlike the latter, does not inhibit human sperm-zona pellucida binding under hemizona assay conditions. Analysis of the N-glycans of GdS by mass spectrometry revealed that all glycoforms of GdS are different from those of GdA. GdS glycans are unusually fucose-rich, and the major complex-type structures are biantennary glycans with Lewisx (Galβ1-4(Fucα1-3)GlcNAc) and Lewisy (Fucα1-2Galβ1-4(Fucα1-3)GlcNAc) antennae. It is probable that these highly fucosylated epitopes contribute to the immunosuppressive activity of human seminal plasma and to the low immunogenicity of sperm. This study provides the first evidence for gender-specific glycosylation that may serve to regulate key processes involved in human reproduction.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.271.50.32159