Loading…
Identification of a Microtubule-binding Domain in a Cytoplasmic Dynein Heavy Chain
As a molecular motor, dynein must coordinate ATP hydrolysis with conformational changes that lead to processive interactions with a microtubule and generate force. To understand how these processes occur, we have begun to map functional domains of a dynein heavy chain from Dictyostelium. The carboxy...
Saved in:
Published in: | The Journal of biological chemistry 1997-08, Vol.272 (32), p.19714-19718 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c504t-c789b851619269b1bb42da9d10ab42b93911e3ba69a51d49a6c069d55c5ed2613 |
---|---|
cites | cdi_FETCH-LOGICAL-c504t-c789b851619269b1bb42da9d10ab42b93911e3ba69a51d49a6c069d55c5ed2613 |
container_end_page | 19718 |
container_issue | 32 |
container_start_page | 19714 |
container_title | The Journal of biological chemistry |
container_volume | 272 |
creator | Koonce, Michael P. |
description | As a molecular motor, dynein must coordinate ATP hydrolysis with conformational changes that lead to processive interactions with a microtubule and generate force. To understand how these processes occur, we have begun to map functional domains of a dynein heavy chain from Dictyostelium. The carboxyl-terminal 10-kilobase region of the heavy chain encodes a 380-kDa polypeptide that approximates the globular head domain. Attempts to further truncate this region fail to produce polypeptides that either bind microtubules or UV-vanadate cleave, indicating that the entire 10-kilobase fragment is necessary to produce a properly folded functional dynein head. We have further identified a region just downstream from the fourth P-loop that appears to constitute at least part of the microtubule-binding domain (amino acids 3182–3818). When deleted, the resulting head domain polypeptide no longer binds microtubules; when the excised region is expressed in vitro, it cosediments with added tubulin polymer. This microtubule-binding domain falls within an area of the molecule predicted to form extended α-helices. At least four discrete sites appear to coordinate activities required to bind the tubulin polymer, indicating that the interaction of dynein with microtubules is complex. |
doi_str_mv | 10.1074/jbc.272.32.19714 |
format | article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1074_jbc_272_32_19714</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925818388392</els_id><sourcerecordid>9242627</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-c789b851619269b1bb42da9d10ab42b93911e3ba69a51d49a6c069d55c5ed2613</originalsourceid><addsrcrecordid>eNp1kM1LwzAYxoMoc07vXoQevLbmTT_jTTZ1g4mgDryFfHXNWJvRdJP-90Y7vBkCecmT5-HJD6FrwBHgPLnbCBmRnEQxiYDmkJygMeAiDuMUPk_RGGMCISVpcY4unNtgvxIKIzSiJCEZycfobaF005nSSN4Z2wS2DHjwYmRru73Yb3UoTKNMsw5mtuamCfzmwbTv7G7LXW1kMOsb7S_nmh_6YFr5N5forORbp6-O5wStnh4_pvNw-fq8mD4sQ5nipAtlXlBRpJABJRkVIERCFKcKMPeToDEF0LHgGeUpqITyTOKMqjSVqVYkg3iC8JDryzrX6pLtWlPztmeA2Q8d5ukwT4fFhP3S8ZabwbLbi1qrP8MRh9dvB70y6-rLtJoJY2Wl639iSm4ZX7fGsdU7UJr7ghhnXr8fdO2_fzC6ZU4a3UitfKTsmLLm_47f0DSH4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Identification of a Microtubule-binding Domain in a Cytoplasmic Dynein Heavy Chain</title><source>ScienceDirect (Online service)</source><creator>Koonce, Michael P.</creator><creatorcontrib>Koonce, Michael P.</creatorcontrib><description>As a molecular motor, dynein must coordinate ATP hydrolysis with conformational changes that lead to processive interactions with a microtubule and generate force. To understand how these processes occur, we have begun to map functional domains of a dynein heavy chain from Dictyostelium. The carboxyl-terminal 10-kilobase region of the heavy chain encodes a 380-kDa polypeptide that approximates the globular head domain. Attempts to further truncate this region fail to produce polypeptides that either bind microtubules or UV-vanadate cleave, indicating that the entire 10-kilobase fragment is necessary to produce a properly folded functional dynein head. We have further identified a region just downstream from the fourth P-loop that appears to constitute at least part of the microtubule-binding domain (amino acids 3182–3818). When deleted, the resulting head domain polypeptide no longer binds microtubules; when the excised region is expressed in vitro, it cosediments with added tubulin polymer. This microtubule-binding domain falls within an area of the molecule predicted to form extended α-helices. At least four discrete sites appear to coordinate activities required to bind the tubulin polymer, indicating that the interaction of dynein with microtubules is complex.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.272.32.19714</identifier><identifier>PMID: 9242627</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adenosine Triphosphate - metabolism ; Animals ; BINDING SITES ; Cytoplasm - enzymology ; DELETIONS ; DICTYOSTELIUM ; DICTYOSTELIUM DISCOIDEUM ; DYNEIN ATPASE ; Dyneins - chemistry ; Dyneins - genetics ; Dyneins - metabolism ; GENE ; GENES ; HIDROLASAS ; HYDROLASE ; HYDROLASES ; Hydrolysis ; MICROTUBULE ; MICROTUBULES ; Microtubules - metabolism ; MICROTUBULOS ; MOLECULAR CONFORMATION ; Molecular Sequence Data ; Open Reading Frames ; PARTIAL DELETIONS ; PEPTIDE ; PEPTIDES ; PEPTIDOS ; POLYPEPTIDES ; Protein Binding ; Protein Biosynthesis ; Protein Conformation ; Protein Folding ; PYROPHOSPHATASES ; SECONDARY STRUCTURE ; Sequence Deletion ; Transcription, Genetic ; Ultraviolet Rays ; Vanadates - metabolism</subject><ispartof>The Journal of biological chemistry, 1997-08, Vol.272 (32), p.19714-19718</ispartof><rights>1997 © 1997 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-c789b851619269b1bb42da9d10ab42b93911e3ba69a51d49a6c069d55c5ed2613</citedby><cites>FETCH-LOGICAL-c504t-c789b851619269b1bb42da9d10ab42b93911e3ba69a51d49a6c069d55c5ed2613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925818388392$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3547,27923,27924,45779</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9242627$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Koonce, Michael P.</creatorcontrib><title>Identification of a Microtubule-binding Domain in a Cytoplasmic Dynein Heavy Chain</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>As a molecular motor, dynein must coordinate ATP hydrolysis with conformational changes that lead to processive interactions with a microtubule and generate force. To understand how these processes occur, we have begun to map functional domains of a dynein heavy chain from Dictyostelium. The carboxyl-terminal 10-kilobase region of the heavy chain encodes a 380-kDa polypeptide that approximates the globular head domain. Attempts to further truncate this region fail to produce polypeptides that either bind microtubules or UV-vanadate cleave, indicating that the entire 10-kilobase fragment is necessary to produce a properly folded functional dynein head. We have further identified a region just downstream from the fourth P-loop that appears to constitute at least part of the microtubule-binding domain (amino acids 3182–3818). When deleted, the resulting head domain polypeptide no longer binds microtubules; when the excised region is expressed in vitro, it cosediments with added tubulin polymer. This microtubule-binding domain falls within an area of the molecule predicted to form extended α-helices. At least four discrete sites appear to coordinate activities required to bind the tubulin polymer, indicating that the interaction of dynein with microtubules is complex.</description><subject>Adenosine Triphosphate - metabolism</subject><subject>Animals</subject><subject>BINDING SITES</subject><subject>Cytoplasm - enzymology</subject><subject>DELETIONS</subject><subject>DICTYOSTELIUM</subject><subject>DICTYOSTELIUM DISCOIDEUM</subject><subject>DYNEIN ATPASE</subject><subject>Dyneins - chemistry</subject><subject>Dyneins - genetics</subject><subject>Dyneins - metabolism</subject><subject>GENE</subject><subject>GENES</subject><subject>HIDROLASAS</subject><subject>HYDROLASE</subject><subject>HYDROLASES</subject><subject>Hydrolysis</subject><subject>MICROTUBULE</subject><subject>MICROTUBULES</subject><subject>Microtubules - metabolism</subject><subject>MICROTUBULOS</subject><subject>MOLECULAR CONFORMATION</subject><subject>Molecular Sequence Data</subject><subject>Open Reading Frames</subject><subject>PARTIAL DELETIONS</subject><subject>PEPTIDE</subject><subject>PEPTIDES</subject><subject>PEPTIDOS</subject><subject>POLYPEPTIDES</subject><subject>Protein Binding</subject><subject>Protein Biosynthesis</subject><subject>Protein Conformation</subject><subject>Protein Folding</subject><subject>PYROPHOSPHATASES</subject><subject>SECONDARY STRUCTURE</subject><subject>Sequence Deletion</subject><subject>Transcription, Genetic</subject><subject>Ultraviolet Rays</subject><subject>Vanadates - metabolism</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LwzAYxoMoc07vXoQevLbmTT_jTTZ1g4mgDryFfHXNWJvRdJP-90Y7vBkCecmT5-HJD6FrwBHgPLnbCBmRnEQxiYDmkJygMeAiDuMUPk_RGGMCISVpcY4unNtgvxIKIzSiJCEZycfobaF005nSSN4Z2wS2DHjwYmRru73Yb3UoTKNMsw5mtuamCfzmwbTv7G7LXW1kMOsb7S_nmh_6YFr5N5forORbp6-O5wStnh4_pvNw-fq8mD4sQ5nipAtlXlBRpJABJRkVIERCFKcKMPeToDEF0LHgGeUpqITyTOKMqjSVqVYkg3iC8JDryzrX6pLtWlPztmeA2Q8d5ukwT4fFhP3S8ZabwbLbi1qrP8MRh9dvB70y6-rLtJoJY2Wl639iSm4ZX7fGsdU7UJr7ghhnXr8fdO2_fzC6ZU4a3UitfKTsmLLm_47f0DSH4Q</recordid><startdate>19970808</startdate><enddate>19970808</enddate><creator>Koonce, Michael P.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19970808</creationdate><title>Identification of a Microtubule-binding Domain in a Cytoplasmic Dynein Heavy Chain</title><author>Koonce, Michael P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-c789b851619269b1bb42da9d10ab42b93911e3ba69a51d49a6c069d55c5ed2613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>Animals</topic><topic>BINDING SITES</topic><topic>Cytoplasm - enzymology</topic><topic>DELETIONS</topic><topic>DICTYOSTELIUM</topic><topic>DICTYOSTELIUM DISCOIDEUM</topic><topic>DYNEIN ATPASE</topic><topic>Dyneins - chemistry</topic><topic>Dyneins - genetics</topic><topic>Dyneins - metabolism</topic><topic>GENE</topic><topic>GENES</topic><topic>HIDROLASAS</topic><topic>HYDROLASE</topic><topic>HYDROLASES</topic><topic>Hydrolysis</topic><topic>MICROTUBULE</topic><topic>MICROTUBULES</topic><topic>Microtubules - metabolism</topic><topic>MICROTUBULOS</topic><topic>MOLECULAR CONFORMATION</topic><topic>Molecular Sequence Data</topic><topic>Open Reading Frames</topic><topic>PARTIAL DELETIONS</topic><topic>PEPTIDE</topic><topic>PEPTIDES</topic><topic>PEPTIDOS</topic><topic>POLYPEPTIDES</topic><topic>Protein Binding</topic><topic>Protein Biosynthesis</topic><topic>Protein Conformation</topic><topic>Protein Folding</topic><topic>PYROPHOSPHATASES</topic><topic>SECONDARY STRUCTURE</topic><topic>Sequence Deletion</topic><topic>Transcription, Genetic</topic><topic>Ultraviolet Rays</topic><topic>Vanadates - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koonce, Michael P.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koonce, Michael P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of a Microtubule-binding Domain in a Cytoplasmic Dynein Heavy Chain</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>1997-08-08</date><risdate>1997</risdate><volume>272</volume><issue>32</issue><spage>19714</spage><epage>19718</epage><pages>19714-19718</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>As a molecular motor, dynein must coordinate ATP hydrolysis with conformational changes that lead to processive interactions with a microtubule and generate force. To understand how these processes occur, we have begun to map functional domains of a dynein heavy chain from Dictyostelium. The carboxyl-terminal 10-kilobase region of the heavy chain encodes a 380-kDa polypeptide that approximates the globular head domain. Attempts to further truncate this region fail to produce polypeptides that either bind microtubules or UV-vanadate cleave, indicating that the entire 10-kilobase fragment is necessary to produce a properly folded functional dynein head. We have further identified a region just downstream from the fourth P-loop that appears to constitute at least part of the microtubule-binding domain (amino acids 3182–3818). When deleted, the resulting head domain polypeptide no longer binds microtubules; when the excised region is expressed in vitro, it cosediments with added tubulin polymer. This microtubule-binding domain falls within an area of the molecule predicted to form extended α-helices. At least four discrete sites appear to coordinate activities required to bind the tubulin polymer, indicating that the interaction of dynein with microtubules is complex.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>9242627</pmid><doi>10.1074/jbc.272.32.19714</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 1997-08, Vol.272 (32), p.19714-19718 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_crossref_primary_10_1074_jbc_272_32_19714 |
source | ScienceDirect (Online service) |
subjects | Adenosine Triphosphate - metabolism Animals BINDING SITES Cytoplasm - enzymology DELETIONS DICTYOSTELIUM DICTYOSTELIUM DISCOIDEUM DYNEIN ATPASE Dyneins - chemistry Dyneins - genetics Dyneins - metabolism GENE GENES HIDROLASAS HYDROLASE HYDROLASES Hydrolysis MICROTUBULE MICROTUBULES Microtubules - metabolism MICROTUBULOS MOLECULAR CONFORMATION Molecular Sequence Data Open Reading Frames PARTIAL DELETIONS PEPTIDE PEPTIDES PEPTIDOS POLYPEPTIDES Protein Binding Protein Biosynthesis Protein Conformation Protein Folding PYROPHOSPHATASES SECONDARY STRUCTURE Sequence Deletion Transcription, Genetic Ultraviolet Rays Vanadates - metabolism |
title | Identification of a Microtubule-binding Domain in a Cytoplasmic Dynein Heavy Chain |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A24%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20a%20Microtubule-binding%20Domain%20in%20a%20Cytoplasmic%20Dynein%20Heavy%20Chain&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Koonce,%20Michael%20P.&rft.date=1997-08-08&rft.volume=272&rft.issue=32&rft.spage=19714&rft.epage=19718&rft.pages=19714-19718&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.272.32.19714&rft_dat=%3Cpubmed_cross%3E9242627%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c504t-c789b851619269b1bb42da9d10ab42b93911e3ba69a51d49a6c069d55c5ed2613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/9242627&rfr_iscdi=true |