Loading…

Identification of a Microtubule-binding Domain in a Cytoplasmic Dynein Heavy Chain

As a molecular motor, dynein must coordinate ATP hydrolysis with conformational changes that lead to processive interactions with a microtubule and generate force. To understand how these processes occur, we have begun to map functional domains of a dynein heavy chain from Dictyostelium. The carboxy...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 1997-08, Vol.272 (32), p.19714-19718
Main Author: Koonce, Michael P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c504t-c789b851619269b1bb42da9d10ab42b93911e3ba69a51d49a6c069d55c5ed2613
cites cdi_FETCH-LOGICAL-c504t-c789b851619269b1bb42da9d10ab42b93911e3ba69a51d49a6c069d55c5ed2613
container_end_page 19718
container_issue 32
container_start_page 19714
container_title The Journal of biological chemistry
container_volume 272
creator Koonce, Michael P.
description As a molecular motor, dynein must coordinate ATP hydrolysis with conformational changes that lead to processive interactions with a microtubule and generate force. To understand how these processes occur, we have begun to map functional domains of a dynein heavy chain from Dictyostelium. The carboxyl-terminal 10-kilobase region of the heavy chain encodes a 380-kDa polypeptide that approximates the globular head domain. Attempts to further truncate this region fail to produce polypeptides that either bind microtubules or UV-vanadate cleave, indicating that the entire 10-kilobase fragment is necessary to produce a properly folded functional dynein head. We have further identified a region just downstream from the fourth P-loop that appears to constitute at least part of the microtubule-binding domain (amino acids 3182–3818). When deleted, the resulting head domain polypeptide no longer binds microtubules; when the excised region is expressed in vitro, it cosediments with added tubulin polymer. This microtubule-binding domain falls within an area of the molecule predicted to form extended α-helices. At least four discrete sites appear to coordinate activities required to bind the tubulin polymer, indicating that the interaction of dynein with microtubules is complex.
doi_str_mv 10.1074/jbc.272.32.19714
format article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1074_jbc_272_32_19714</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925818388392</els_id><sourcerecordid>9242627</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-c789b851619269b1bb42da9d10ab42b93911e3ba69a51d49a6c069d55c5ed2613</originalsourceid><addsrcrecordid>eNp1kM1LwzAYxoMoc07vXoQevLbmTT_jTTZ1g4mgDryFfHXNWJvRdJP-90Y7vBkCecmT5-HJD6FrwBHgPLnbCBmRnEQxiYDmkJygMeAiDuMUPk_RGGMCISVpcY4unNtgvxIKIzSiJCEZycfobaF005nSSN4Z2wS2DHjwYmRru73Yb3UoTKNMsw5mtuamCfzmwbTv7G7LXW1kMOsb7S_nmh_6YFr5N5forORbp6-O5wStnh4_pvNw-fq8mD4sQ5nipAtlXlBRpJABJRkVIERCFKcKMPeToDEF0LHgGeUpqITyTOKMqjSVqVYkg3iC8JDryzrX6pLtWlPztmeA2Q8d5ukwT4fFhP3S8ZabwbLbi1qrP8MRh9dvB70y6-rLtJoJY2Wl639iSm4ZX7fGsdU7UJr7ghhnXr8fdO2_fzC6ZU4a3UitfKTsmLLm_47f0DSH4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Identification of a Microtubule-binding Domain in a Cytoplasmic Dynein Heavy Chain</title><source>ScienceDirect (Online service)</source><creator>Koonce, Michael P.</creator><creatorcontrib>Koonce, Michael P.</creatorcontrib><description>As a molecular motor, dynein must coordinate ATP hydrolysis with conformational changes that lead to processive interactions with a microtubule and generate force. To understand how these processes occur, we have begun to map functional domains of a dynein heavy chain from Dictyostelium. The carboxyl-terminal 10-kilobase region of the heavy chain encodes a 380-kDa polypeptide that approximates the globular head domain. Attempts to further truncate this region fail to produce polypeptides that either bind microtubules or UV-vanadate cleave, indicating that the entire 10-kilobase fragment is necessary to produce a properly folded functional dynein head. We have further identified a region just downstream from the fourth P-loop that appears to constitute at least part of the microtubule-binding domain (amino acids 3182–3818). When deleted, the resulting head domain polypeptide no longer binds microtubules; when the excised region is expressed in vitro, it cosediments with added tubulin polymer. This microtubule-binding domain falls within an area of the molecule predicted to form extended α-helices. At least four discrete sites appear to coordinate activities required to bind the tubulin polymer, indicating that the interaction of dynein with microtubules is complex.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.272.32.19714</identifier><identifier>PMID: 9242627</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adenosine Triphosphate - metabolism ; Animals ; BINDING SITES ; Cytoplasm - enzymology ; DELETIONS ; DICTYOSTELIUM ; DICTYOSTELIUM DISCOIDEUM ; DYNEIN ATPASE ; Dyneins - chemistry ; Dyneins - genetics ; Dyneins - metabolism ; GENE ; GENES ; HIDROLASAS ; HYDROLASE ; HYDROLASES ; Hydrolysis ; MICROTUBULE ; MICROTUBULES ; Microtubules - metabolism ; MICROTUBULOS ; MOLECULAR CONFORMATION ; Molecular Sequence Data ; Open Reading Frames ; PARTIAL DELETIONS ; PEPTIDE ; PEPTIDES ; PEPTIDOS ; POLYPEPTIDES ; Protein Binding ; Protein Biosynthesis ; Protein Conformation ; Protein Folding ; PYROPHOSPHATASES ; SECONDARY STRUCTURE ; Sequence Deletion ; Transcription, Genetic ; Ultraviolet Rays ; Vanadates - metabolism</subject><ispartof>The Journal of biological chemistry, 1997-08, Vol.272 (32), p.19714-19718</ispartof><rights>1997 © 1997 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-c789b851619269b1bb42da9d10ab42b93911e3ba69a51d49a6c069d55c5ed2613</citedby><cites>FETCH-LOGICAL-c504t-c789b851619269b1bb42da9d10ab42b93911e3ba69a51d49a6c069d55c5ed2613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925818388392$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3547,27923,27924,45779</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9242627$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Koonce, Michael P.</creatorcontrib><title>Identification of a Microtubule-binding Domain in a Cytoplasmic Dynein Heavy Chain</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>As a molecular motor, dynein must coordinate ATP hydrolysis with conformational changes that lead to processive interactions with a microtubule and generate force. To understand how these processes occur, we have begun to map functional domains of a dynein heavy chain from Dictyostelium. The carboxyl-terminal 10-kilobase region of the heavy chain encodes a 380-kDa polypeptide that approximates the globular head domain. Attempts to further truncate this region fail to produce polypeptides that either bind microtubules or UV-vanadate cleave, indicating that the entire 10-kilobase fragment is necessary to produce a properly folded functional dynein head. We have further identified a region just downstream from the fourth P-loop that appears to constitute at least part of the microtubule-binding domain (amino acids 3182–3818). When deleted, the resulting head domain polypeptide no longer binds microtubules; when the excised region is expressed in vitro, it cosediments with added tubulin polymer. This microtubule-binding domain falls within an area of the molecule predicted to form extended α-helices. At least four discrete sites appear to coordinate activities required to bind the tubulin polymer, indicating that the interaction of dynein with microtubules is complex.</description><subject>Adenosine Triphosphate - metabolism</subject><subject>Animals</subject><subject>BINDING SITES</subject><subject>Cytoplasm - enzymology</subject><subject>DELETIONS</subject><subject>DICTYOSTELIUM</subject><subject>DICTYOSTELIUM DISCOIDEUM</subject><subject>DYNEIN ATPASE</subject><subject>Dyneins - chemistry</subject><subject>Dyneins - genetics</subject><subject>Dyneins - metabolism</subject><subject>GENE</subject><subject>GENES</subject><subject>HIDROLASAS</subject><subject>HYDROLASE</subject><subject>HYDROLASES</subject><subject>Hydrolysis</subject><subject>MICROTUBULE</subject><subject>MICROTUBULES</subject><subject>Microtubules - metabolism</subject><subject>MICROTUBULOS</subject><subject>MOLECULAR CONFORMATION</subject><subject>Molecular Sequence Data</subject><subject>Open Reading Frames</subject><subject>PARTIAL DELETIONS</subject><subject>PEPTIDE</subject><subject>PEPTIDES</subject><subject>PEPTIDOS</subject><subject>POLYPEPTIDES</subject><subject>Protein Binding</subject><subject>Protein Biosynthesis</subject><subject>Protein Conformation</subject><subject>Protein Folding</subject><subject>PYROPHOSPHATASES</subject><subject>SECONDARY STRUCTURE</subject><subject>Sequence Deletion</subject><subject>Transcription, Genetic</subject><subject>Ultraviolet Rays</subject><subject>Vanadates - metabolism</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LwzAYxoMoc07vXoQevLbmTT_jTTZ1g4mgDryFfHXNWJvRdJP-90Y7vBkCecmT5-HJD6FrwBHgPLnbCBmRnEQxiYDmkJygMeAiDuMUPk_RGGMCISVpcY4unNtgvxIKIzSiJCEZycfobaF005nSSN4Z2wS2DHjwYmRru73Yb3UoTKNMsw5mtuamCfzmwbTv7G7LXW1kMOsb7S_nmh_6YFr5N5forORbp6-O5wStnh4_pvNw-fq8mD4sQ5nipAtlXlBRpJABJRkVIERCFKcKMPeToDEF0LHgGeUpqITyTOKMqjSVqVYkg3iC8JDryzrX6pLtWlPztmeA2Q8d5ukwT4fFhP3S8ZabwbLbi1qrP8MRh9dvB70y6-rLtJoJY2Wl639iSm4ZX7fGsdU7UJr7ghhnXr8fdO2_fzC6ZU4a3UitfKTsmLLm_47f0DSH4Q</recordid><startdate>19970808</startdate><enddate>19970808</enddate><creator>Koonce, Michael P.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19970808</creationdate><title>Identification of a Microtubule-binding Domain in a Cytoplasmic Dynein Heavy Chain</title><author>Koonce, Michael P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-c789b851619269b1bb42da9d10ab42b93911e3ba69a51d49a6c069d55c5ed2613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>Animals</topic><topic>BINDING SITES</topic><topic>Cytoplasm - enzymology</topic><topic>DELETIONS</topic><topic>DICTYOSTELIUM</topic><topic>DICTYOSTELIUM DISCOIDEUM</topic><topic>DYNEIN ATPASE</topic><topic>Dyneins - chemistry</topic><topic>Dyneins - genetics</topic><topic>Dyneins - metabolism</topic><topic>GENE</topic><topic>GENES</topic><topic>HIDROLASAS</topic><topic>HYDROLASE</topic><topic>HYDROLASES</topic><topic>Hydrolysis</topic><topic>MICROTUBULE</topic><topic>MICROTUBULES</topic><topic>Microtubules - metabolism</topic><topic>MICROTUBULOS</topic><topic>MOLECULAR CONFORMATION</topic><topic>Molecular Sequence Data</topic><topic>Open Reading Frames</topic><topic>PARTIAL DELETIONS</topic><topic>PEPTIDE</topic><topic>PEPTIDES</topic><topic>PEPTIDOS</topic><topic>POLYPEPTIDES</topic><topic>Protein Binding</topic><topic>Protein Biosynthesis</topic><topic>Protein Conformation</topic><topic>Protein Folding</topic><topic>PYROPHOSPHATASES</topic><topic>SECONDARY STRUCTURE</topic><topic>Sequence Deletion</topic><topic>Transcription, Genetic</topic><topic>Ultraviolet Rays</topic><topic>Vanadates - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koonce, Michael P.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koonce, Michael P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of a Microtubule-binding Domain in a Cytoplasmic Dynein Heavy Chain</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>1997-08-08</date><risdate>1997</risdate><volume>272</volume><issue>32</issue><spage>19714</spage><epage>19718</epage><pages>19714-19718</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>As a molecular motor, dynein must coordinate ATP hydrolysis with conformational changes that lead to processive interactions with a microtubule and generate force. To understand how these processes occur, we have begun to map functional domains of a dynein heavy chain from Dictyostelium. The carboxyl-terminal 10-kilobase region of the heavy chain encodes a 380-kDa polypeptide that approximates the globular head domain. Attempts to further truncate this region fail to produce polypeptides that either bind microtubules or UV-vanadate cleave, indicating that the entire 10-kilobase fragment is necessary to produce a properly folded functional dynein head. We have further identified a region just downstream from the fourth P-loop that appears to constitute at least part of the microtubule-binding domain (amino acids 3182–3818). When deleted, the resulting head domain polypeptide no longer binds microtubules; when the excised region is expressed in vitro, it cosediments with added tubulin polymer. This microtubule-binding domain falls within an area of the molecule predicted to form extended α-helices. At least four discrete sites appear to coordinate activities required to bind the tubulin polymer, indicating that the interaction of dynein with microtubules is complex.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>9242627</pmid><doi>10.1074/jbc.272.32.19714</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 1997-08, Vol.272 (32), p.19714-19718
issn 0021-9258
1083-351X
language eng
recordid cdi_crossref_primary_10_1074_jbc_272_32_19714
source ScienceDirect (Online service)
subjects Adenosine Triphosphate - metabolism
Animals
BINDING SITES
Cytoplasm - enzymology
DELETIONS
DICTYOSTELIUM
DICTYOSTELIUM DISCOIDEUM
DYNEIN ATPASE
Dyneins - chemistry
Dyneins - genetics
Dyneins - metabolism
GENE
GENES
HIDROLASAS
HYDROLASE
HYDROLASES
Hydrolysis
MICROTUBULE
MICROTUBULES
Microtubules - metabolism
MICROTUBULOS
MOLECULAR CONFORMATION
Molecular Sequence Data
Open Reading Frames
PARTIAL DELETIONS
PEPTIDE
PEPTIDES
PEPTIDOS
POLYPEPTIDES
Protein Binding
Protein Biosynthesis
Protein Conformation
Protein Folding
PYROPHOSPHATASES
SECONDARY STRUCTURE
Sequence Deletion
Transcription, Genetic
Ultraviolet Rays
Vanadates - metabolism
title Identification of a Microtubule-binding Domain in a Cytoplasmic Dynein Heavy Chain
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A24%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20a%20Microtubule-binding%20Domain%20in%20a%20Cytoplasmic%20Dynein%20Heavy%20Chain&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Koonce,%20Michael%20P.&rft.date=1997-08-08&rft.volume=272&rft.issue=32&rft.spage=19714&rft.epage=19718&rft.pages=19714-19718&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.272.32.19714&rft_dat=%3Cpubmed_cross%3E9242627%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c504t-c789b851619269b1bb42da9d10ab42b93911e3ba69a51d49a6c069d55c5ed2613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/9242627&rfr_iscdi=true