Loading…

Biosynthesis of Ganglioside Mimics in Campylobacter jejuni OH4384

We have applied two strategies for the cloning of four genes responsible for the biosynthesis of the GT1a ganglioside mimic in the lipooligosaccharide (LOS) of a bacterial pathogen,Campylobacter jejuni OH4384, which has been associated with Guillain-Barré syndrome. We first cloned a gene encoding an...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2000-02, Vol.275 (6), p.3896-3906
Main Authors: Gilbert, Michel, Brisson, Jean-Robert, Karwaski, Marie-France, Michniewicz, Joseph, Cunningham, Anna-Maria, Wu, Yuyang, Young, N.Martin, Wakarchuk, Warren W.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We have applied two strategies for the cloning of four genes responsible for the biosynthesis of the GT1a ganglioside mimic in the lipooligosaccharide (LOS) of a bacterial pathogen,Campylobacter jejuni OH4384, which has been associated with Guillain-Barré syndrome. We first cloned a gene encoding an α-2,3-sialyltransferase (cst-I) using an activity screening strategy. We then used nucleotide sequence information from the recently completed sequence from C. jejuni NCTC 11168 to amplify a region involved in LOS biosynthesis from C. jejuni OH4384. The LOS biosynthesis locus from C. jejuni OH4384 is 11.47 kilobase pairs and encodes 13 partial or complete open reading frames, while the corresponding locus in C. jejuni NCTC 11168 spans 13.49 kilobase pairs and contains 15 open reading frames, indicating a different organization between these two strains. Potential glycosyltransferase genes were cloned individually, expressed in Escherichia coli, and assayed using synthetic fluorescent oligosaccharides as acceptors. We identified genes encoding a β-1,4-N-acetylgalactosaminyl-transferase (cgtA), a β-1,3-galactosyltransferase (cgtB), and a bifunctional sialyltransferase (cst-II), which transfers sialic acid to O-3 of galactose and to O-8 of a sialic acid that is linked α-2,3- to a galactose. The linkage specificity of each identified glycosyltransferase was confirmed by NMR analysis at 600 MHz on nanomole amounts of model compounds synthesized in vitro. Using a gradient inverse broadband nano-NMR probe, sequence information could be obtained by detection of3J(C,H) correlations across the glycosidic bond. The role of cgtA and cst-II in the synthesis of the GT1a mimic in C. jejuni OH4384 were confirmed by comparing their sequence and activity with corresponding homologues in two relatedC. jejuni strains that express shorter ganglioside mimics in their LOS.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.275.6.3896