Loading…

Escherichia coli DNA Polymerase I (Klenow Fragment) Uses a Hydrogen-bonding Fork from Arg668 to the Primer Terminus and Incoming Deoxynucleotide Triphosphate to Catalyze DNA Replication

Interactions between the minor groove of the DNA and DNA polymerases appear to play a major role in the catalysis and fidelity of DNA replication. In particular, Arg668 of Escherichia coli DNA polymerase I (Klenow fragment) makes a critical contact with the N-3-position of guanine at the primer term...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2004-08, Vol.279 (32), p.33043-33046
Main Authors: Meyer, Aviva S., Blandino, Maureen, Spratt, Thomas E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Interactions between the minor groove of the DNA and DNA polymerases appear to play a major role in the catalysis and fidelity of DNA replication. In particular, Arg668 of Escherichia coli DNA polymerase I (Klenow fragment) makes a critical contact with the N-3-position of guanine at the primer terminus. We investigated the interaction between Arg668 and the ring oxygen of the incoming deoxynucleotide triphosphate (dNTP) using a combination of site-specific mutagenesis of the protein and atomic substitution of the DNA and dNTP. Hydrogen bonds from Arg668 were probed with the site-specific mutant R668A. Hydrogen bonds from the DNA were probed with oligodeoxynucleotides containing either guanine or 3-deazaguanine (3DG) at the primer terminus. Hydrogen bonds from the incoming dNTP were probed with (1 ′R,3 ′R,4 ′R)-1-[3-hydroxy-4-(triphosphorylmethyl)cyclopent-1-yl]uracil (dcUTP), an analog of dUTP in which the ring oxygen of the deoxyribose moiety was replaced by a methylene group. We found that the pre-steady-state parameter kpol was decreased 1,600 to 2,000-fold with each of the single substitutions. When the substitutions were combined, there was no additional decrease (R668A and 3DG), a 5-fold decrease (3DG and dcUTP), and a 50-fold decrease (R668A and dcUTP) in kpol. These results are consistent with a hydrogen-bonding fork from Arg668 to the primer terminus and incoming dNTP. These interactions may play an important role in fidelity as well as catalysis of DNA replication.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.C400232200