Loading…

Antagonistic Regulation of Type I Collagen Gene Expression by Interferon-γ and Transforming Growth Factor-β

Among the extracellular signals that modulate the synthesis of collagen, transforming growth factor-β (TGF-β) and interferon-γ (IFN-γ) are preeminent. These two cytokines exert antagonistic effects on fibroblasts, and play important roles in the physiologic regulation of extracellular matrix turnove...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2001-04, Vol.276 (14), p.11041-11048
Main Authors: Ghosh, Asish K., Yuan, Weihua, Mori, Yasuji, Chen, Shu-jen, Varga, John
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Among the extracellular signals that modulate the synthesis of collagen, transforming growth factor-β (TGF-β) and interferon-γ (IFN-γ) are preeminent. These two cytokines exert antagonistic effects on fibroblasts, and play important roles in the physiologic regulation of extracellular matrix turnover. We have shown previously that in normal skin fibroblasts, TGF-β positively regulates α2(I) procollagen gene (COL1A2) promoter activity through the cellular Smad signal transduction pathway. In contrast, IFN-γ activates Stat1α, down-regulates COL1A2transcription, and abrogates its stimulation induced by TGF-β. The level of integration of the two pathways mediating antagonistic collagen regulation is unknown. We now report that IFN-γ abrogates TGF-β-stimulated COL1A2 transcription in fibroblasts by inhibiting Smad activities. IFN-γ appears to induce competition between activated Stat1α and Smad3 for interaction with limiting amounts of cellular p300/CBP. Overexpression of p300 restoredCOL1A2 stimulation by TGF-β in the presence of IFN-γ, and potentiated IFN-γ-dependent positive transcriptional responses. In contrast to fibroblasts, in U4A cells lacking Jak1 and consequently unable to activate Stat1α-mediated responses, IFN-γ failed to repress TGF-β-induced transcription. These results indicate that as essential coactivators for both Smad3 and Stat1α, nuclear p300/CBP integrate signals that positively or negatively regulateCOL1A2 transcription. The findings implicate a novel mechanism to account for antagonistic interaction of Smad and Jak-Stat pathways in regulation of target genes. In fibroblasts responding to cytokines with opposing effects on collagen transcription, the relative levels of cellular coactivators, and their interaction with regulated transcription factors, may govern the net effect.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M004709200