Loading…
Biochemical Properties and cDNa Cloning of Two New Lectins from the Plasma of Tachypleus tridentatus
A Sepharose CL-4B-binding protein,Tachypleus plasma lectin 1 (TPL-1), and a lipopolysaccharide (LPS)-binding protein, Tachypleus plasma lectin-2 (TPL-2), have been isolated from the plasma ofTachypleus tridentatus and biochemically characterized. Each protein is coded by a homologous family of multi...
Saved in:
Published in: | The Journal of biological chemistry 2001-03, Vol.276 (13), p.9631-9639 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A Sepharose CL-4B-binding protein,Tachypleus plasma lectin 1 (TPL-1), and a lipopolysaccharide (LPS)-binding protein, Tachypleus plasma lectin-2 (TPL-2), have been isolated from the plasma ofTachypleus tridentatus and biochemically characterized. Each protein is coded by a homologous family of multigenes. TPL-1 binds to Sepharose CL-4B and was eluted with buffer containing 0.4m GlcNAc. The deduced amino acid sequence of TPL-1 consisted of 232 amino acids with an N-glycosylation site, Asn-Gly-Ser at residues 74–76. It shares a 65% sequence identity and similar internal repeats of about 20 amino acid motifs with tachylectin-1. Tachylectin-1 was identified as a lipopolysaccharide-agarose binding nonglycosylated protein from the amebocytes of T. tridentatus. TPL-2 was eluted from the LPS-Sepharose CL-4B affinity column in buffer containing 0.4m GlcNAc and 2 m KCl. The deduced amino acid sequence of TPL-2 consisted of 128 amino acids with anN-glycosylation site, Asn-Cys-Thr, at positions 3–5. It shares an 80% sequence identity with tachylectin-3, isolated from the amebocytes of T. tridentatus. TPL-2 purified by LPS-affinity column from the plasma predominantly exists as a dimer of a glycoprotein with an apparent molecular mass of 36 kDa. Tachylectin-3 is an intracellular nonglycosylated protein that also exists as a dimer in solution with an apparent molecular mass of 29 kDa. It recognizes Gram-negative bacteria through the 0-antigen of LPS. Western blot analyses showed that, in the plasma, TPL-1 and TPL-2 exist predominantly as oligomers with molecular masses above 60 kDa. They both bind to Gram-positive and Gram-negative bacteria, and this binding is inhibited by GlcNAc. Possible binding site of TPL-1 and TPL-2 to the bacteria could be at the NAc moiety of GlcNAc-MurNAc of the peptidoglycan. The physiological function of TPL-1 and TPL-2 is most likely related to their ability to form a cluster of interlocking molecules to immobilize and entrap invading organisms. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M008414200 |