Loading…

Improved Statistical Inference from DNA Microarray Data Using Analysis of Variance and A Bayesian Statistical Framework

We describe statistical methods based on thet test that can be conveniently used on high density array data to test for statistically significant differences between treatments. These t tests employ either the observed variance among replicates within treatments or a Bayesian estimate of the varianc...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2001-01, Vol.276 (23), p.19937-19944
Main Authors: Long, Anthony D., Mangalam, Harry J., Chan, Bob Y.P., Tolleri, Lorenzo, Hatfield, G. Wesley, Baldi, Pierre
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2680-df7aa2860263efc3a99f3bae15e0944efbc743d48cdfac79af4b551b4b4df59c3
cites cdi_FETCH-LOGICAL-c2680-df7aa2860263efc3a99f3bae15e0944efbc743d48cdfac79af4b551b4b4df59c3
container_end_page 19944
container_issue 23
container_start_page 19937
container_title The Journal of biological chemistry
container_volume 276
creator Long, Anthony D.
Mangalam, Harry J.
Chan, Bob Y.P.
Tolleri, Lorenzo
Hatfield, G. Wesley
Baldi, Pierre
description We describe statistical methods based on thet test that can be conveniently used on high density array data to test for statistically significant differences between treatments. These t tests employ either the observed variance among replicates within treatments or a Bayesian estimate of the variance among replicates within treatments based on a prior estimate obtained from a local estimate of the standard deviation. The Bayesian prior allows statistical inference to be made from microarray data even when experiments are only replicated at nominal levels. We apply these new statistical tests to a data set that examined differential gene expression patterns in IHF+ and IHF−Escherichia coli cells (Arfin, S. M., Long, A. D., Ito, E. T., Tolleri, L., Riehle, M. M., Paegle, E. S., and Hatfield, G. W. (2000) J. Biol. Chem. 275, 29672–29684). These analyses identify a more biologically reasonable set of candidate genes than those identified using statistical tests not incorporating a Bayesian prior. We also show that statistical tests based on analysis of variance and a Bayesian prior identify genes that are up- or down-regulated following an experimental manipulation more reliably than approaches based only on a t test or fold change. All the described tests are implemented in a simple-to-use web interface called Cyber-T that is located on the University of California at Irvine genomics web site.
doi_str_mv 10.1074/jbc.M010192200
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1074_jbc_M010192200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925819404250</els_id><sourcerecordid>S0021925819404250</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2680-df7aa2860263efc3a99f3bae15e0944efbc743d48cdfac79af4b551b4b4df59c3</originalsourceid><addsrcrecordid>eNp1kM1PAjEQxRujEUSvnnvwutiv_egRQZQE9KAYb81st4Uiu0vaDWT_e5dgYjw4l0km7715-SF0S8mQklTcb3I9XBBKqGSMkDPUpyTjEY_p5znqE8JoJFmc9dBVCBvSjZD0EvUoZbEULOmjw6zc-XpvCvzWQONC4zRs8ayyxptKG2x9XeLJywgvnPY1eA8tnkADeBlctcKjCrZtcAHXFn-Ad3D0QFXgEX6A1oTu8Cd46qE0h9p_XaMLC9tgbn72AC2nj-_j52j--jQbj-aRZklGosKmACxLCEu4sZqDlJbnYGhsiBTC2Fynghci04UFnUqwIo9jmotcFDaWmg_Q8JTbtQ_BG6t23pXgW0WJOhJUHUH1S7Az3J0Ma7daH5w3Kne1XptSsTRRjCsqJU87WXaSma783hmvgnZHYkVn0Y0qavffh2_vr4L8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Improved Statistical Inference from DNA Microarray Data Using Analysis of Variance and A Bayesian Statistical Framework</title><source>ScienceDirect - Connect here FIRST to enable access</source><creator>Long, Anthony D. ; Mangalam, Harry J. ; Chan, Bob Y.P. ; Tolleri, Lorenzo ; Hatfield, G. Wesley ; Baldi, Pierre</creator><creatorcontrib>Long, Anthony D. ; Mangalam, Harry J. ; Chan, Bob Y.P. ; Tolleri, Lorenzo ; Hatfield, G. Wesley ; Baldi, Pierre</creatorcontrib><description>We describe statistical methods based on thet test that can be conveniently used on high density array data to test for statistically significant differences between treatments. These t tests employ either the observed variance among replicates within treatments or a Bayesian estimate of the variance among replicates within treatments based on a prior estimate obtained from a local estimate of the standard deviation. The Bayesian prior allows statistical inference to be made from microarray data even when experiments are only replicated at nominal levels. We apply these new statistical tests to a data set that examined differential gene expression patterns in IHF+ and IHF−Escherichia coli cells (Arfin, S. M., Long, A. D., Ito, E. T., Tolleri, L., Riehle, M. M., Paegle, E. S., and Hatfield, G. W. (2000) J. Biol. Chem. 275, 29672–29684). These analyses identify a more biologically reasonable set of candidate genes than those identified using statistical tests not incorporating a Bayesian prior. We also show that statistical tests based on analysis of variance and a Bayesian prior identify genes that are up- or down-regulated following an experimental manipulation more reliably than approaches based only on a t test or fold change. All the described tests are implemented in a simple-to-use web interface called Cyber-T that is located on the University of California at Irvine genomics web site.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M010192200</identifier><identifier>PMID: 11259426</identifier><language>eng</language><publisher>Elsevier Inc</publisher><ispartof>The Journal of biological chemistry, 2001-01, Vol.276 (23), p.19937-19944</ispartof><rights>2001 © 2001 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2680-df7aa2860263efc3a99f3bae15e0944efbc743d48cdfac79af4b551b4b4df59c3</citedby><cites>FETCH-LOGICAL-c2680-df7aa2860263efc3a99f3bae15e0944efbc743d48cdfac79af4b551b4b4df59c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925819404250$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids></links><search><creatorcontrib>Long, Anthony D.</creatorcontrib><creatorcontrib>Mangalam, Harry J.</creatorcontrib><creatorcontrib>Chan, Bob Y.P.</creatorcontrib><creatorcontrib>Tolleri, Lorenzo</creatorcontrib><creatorcontrib>Hatfield, G. Wesley</creatorcontrib><creatorcontrib>Baldi, Pierre</creatorcontrib><title>Improved Statistical Inference from DNA Microarray Data Using Analysis of Variance and A Bayesian Statistical Framework</title><title>The Journal of biological chemistry</title><description>We describe statistical methods based on thet test that can be conveniently used on high density array data to test for statistically significant differences between treatments. These t tests employ either the observed variance among replicates within treatments or a Bayesian estimate of the variance among replicates within treatments based on a prior estimate obtained from a local estimate of the standard deviation. The Bayesian prior allows statistical inference to be made from microarray data even when experiments are only replicated at nominal levels. We apply these new statistical tests to a data set that examined differential gene expression patterns in IHF+ and IHF−Escherichia coli cells (Arfin, S. M., Long, A. D., Ito, E. T., Tolleri, L., Riehle, M. M., Paegle, E. S., and Hatfield, G. W. (2000) J. Biol. Chem. 275, 29672–29684). These analyses identify a more biologically reasonable set of candidate genes than those identified using statistical tests not incorporating a Bayesian prior. We also show that statistical tests based on analysis of variance and a Bayesian prior identify genes that are up- or down-regulated following an experimental manipulation more reliably than approaches based only on a t test or fold change. All the described tests are implemented in a simple-to-use web interface called Cyber-T that is located on the University of California at Irvine genomics web site.</description><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNp1kM1PAjEQxRujEUSvnnvwutiv_egRQZQE9KAYb81st4Uiu0vaDWT_e5dgYjw4l0km7715-SF0S8mQklTcb3I9XBBKqGSMkDPUpyTjEY_p5znqE8JoJFmc9dBVCBvSjZD0EvUoZbEULOmjw6zc-XpvCvzWQONC4zRs8ayyxptKG2x9XeLJywgvnPY1eA8tnkADeBlctcKjCrZtcAHXFn-Ad3D0QFXgEX6A1oTu8Cd46qE0h9p_XaMLC9tgbn72AC2nj-_j52j--jQbj-aRZklGosKmACxLCEu4sZqDlJbnYGhsiBTC2Fynghci04UFnUqwIo9jmotcFDaWmg_Q8JTbtQ_BG6t23pXgW0WJOhJUHUH1S7Az3J0Ma7daH5w3Kne1XptSsTRRjCsqJU87WXaSma783hmvgnZHYkVn0Y0qavffh2_vr4L8</recordid><startdate>200101</startdate><enddate>200101</enddate><creator>Long, Anthony D.</creator><creator>Mangalam, Harry J.</creator><creator>Chan, Bob Y.P.</creator><creator>Tolleri, Lorenzo</creator><creator>Hatfield, G. Wesley</creator><creator>Baldi, Pierre</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200101</creationdate><title>Improved Statistical Inference from DNA Microarray Data Using Analysis of Variance and A Bayesian Statistical Framework</title><author>Long, Anthony D. ; Mangalam, Harry J. ; Chan, Bob Y.P. ; Tolleri, Lorenzo ; Hatfield, G. Wesley ; Baldi, Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2680-df7aa2860263efc3a99f3bae15e0944efbc743d48cdfac79af4b551b4b4df59c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Long, Anthony D.</creatorcontrib><creatorcontrib>Mangalam, Harry J.</creatorcontrib><creatorcontrib>Chan, Bob Y.P.</creatorcontrib><creatorcontrib>Tolleri, Lorenzo</creatorcontrib><creatorcontrib>Hatfield, G. Wesley</creatorcontrib><creatorcontrib>Baldi, Pierre</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Long, Anthony D.</au><au>Mangalam, Harry J.</au><au>Chan, Bob Y.P.</au><au>Tolleri, Lorenzo</au><au>Hatfield, G. Wesley</au><au>Baldi, Pierre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Statistical Inference from DNA Microarray Data Using Analysis of Variance and A Bayesian Statistical Framework</atitle><jtitle>The Journal of biological chemistry</jtitle><date>2001-01</date><risdate>2001</risdate><volume>276</volume><issue>23</issue><spage>19937</spage><epage>19944</epage><pages>19937-19944</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>We describe statistical methods based on thet test that can be conveniently used on high density array data to test for statistically significant differences between treatments. These t tests employ either the observed variance among replicates within treatments or a Bayesian estimate of the variance among replicates within treatments based on a prior estimate obtained from a local estimate of the standard deviation. The Bayesian prior allows statistical inference to be made from microarray data even when experiments are only replicated at nominal levels. We apply these new statistical tests to a data set that examined differential gene expression patterns in IHF+ and IHF−Escherichia coli cells (Arfin, S. M., Long, A. D., Ito, E. T., Tolleri, L., Riehle, M. M., Paegle, E. S., and Hatfield, G. W. (2000) J. Biol. Chem. 275, 29672–29684). These analyses identify a more biologically reasonable set of candidate genes than those identified using statistical tests not incorporating a Bayesian prior. We also show that statistical tests based on analysis of variance and a Bayesian prior identify genes that are up- or down-regulated following an experimental manipulation more reliably than approaches based only on a t test or fold change. All the described tests are implemented in a simple-to-use web interface called Cyber-T that is located on the University of California at Irvine genomics web site.</abstract><pub>Elsevier Inc</pub><pmid>11259426</pmid><doi>10.1074/jbc.M010192200</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2001-01, Vol.276 (23), p.19937-19944
issn 0021-9258
1083-351X
language eng
recordid cdi_crossref_primary_10_1074_jbc_M010192200
source ScienceDirect - Connect here FIRST to enable access
title Improved Statistical Inference from DNA Microarray Data Using Analysis of Variance and A Bayesian Statistical Framework
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A15%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Statistical%20Inference%20from%20DNA%20Microarray%20Data%20Using%20Analysis%20of%20Variance%20and%20A%20Bayesian%20Statistical%20Framework&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Long,%20Anthony%20D.&rft.date=2001-01&rft.volume=276&rft.issue=23&rft.spage=19937&rft.epage=19944&rft.pages=19937-19944&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M010192200&rft_dat=%3Celsevier_cross%3ES0021925819404250%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2680-df7aa2860263efc3a99f3bae15e0944efbc743d48cdfac79af4b551b4b4df59c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/11259426&rfr_iscdi=true