Loading…
Heterogeneity of ATP-sensitive K+ Channels in Cardiac Myocytes
Ventricular ATP-sensitive potassium (KATP) channels link intracellular energy metabolism to membrane excitability and contractility. Our recent proteomics experiments identified plakoglobin and plakophilin-2 (PKP2) as putative KATP channel-associated proteins. We investigated whether the association...
Saved in:
Published in: | The Journal of biological chemistry 2012-11, Vol.287 (49), p.41258-41267 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ventricular ATP-sensitive potassium (KATP) channels link intracellular energy metabolism to membrane excitability and contractility. Our recent proteomics experiments identified plakoglobin and plakophilin-2 (PKP2) as putative KATP channel-associated proteins. We investigated whether the association of KATP channel subunits with junctional proteins translates to heterogeneous subcellular distribution within a cardiac myocyte. Co-immunoprecipitation experiments confirmed physical interaction between KATP channels and PKP2 and plakoglobin in rat heart. Immunolocalization experiments demonstrated that KATP channel subunits (Kir6.2 and SUR2A) are expressed at a higher density at the intercalated disk in mouse and rat hearts, where they co-localized with PKP2 and plakoglobin. Super-resolution microscopy demonstrate that KATP channels are clustered within nanometer distances from junctional proteins. The local KATP channel density, recorded in excised inside-out patches, was larger at the cell end when compared with local currents recorded from the cell center. The KATP channel unitary conductance, block by MgATP and activation by MgADP, did not differ between these two locations. Whole cell KATP channel current density (activated by metabolic inhibition) was ∼40% smaller in myocytes from mice haploinsufficient for PKP2. Experiments with excised patches demonstrated that the regional heterogeneity of KATP channels was absent in the PKP2 deficient mice, but the KATP channel unitary conductance and nucleotide sensitivities remained unaltered. Our data demonstrate heterogeneity of KATP channel distribution within a cardiac myocyte. The higher KATP channel density at the intercalated disk implies a possible role at the intercellular junctions during cardiac ischemia.
Background: KATP channels are abundantly expressed in cardiac myocytes.
Results: KATP channels interact with desmosomal proteins and localize to the intercalated disk.
Conclusion: KATP channels are heterogeneously expressed within a cardiac myocyte.
Significance: KATP channels may have role at the intercellular junctions during cardiac ischemia. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M112.412122 |