Loading…

UVA Light-excited Kynurenines Oxidize Ascorbate and Modify Lens Proteins through the Formation of Advanced Glycation End Products

Advanced glycation end products (AGEs) contribute to lens protein pigmentation and cross-linking during aging and cataract formation. In vitro experiments have shown that ascorbate (ASC) oxidation products can form AGEs in proteins. However, the mechanisms of ASC oxidation and AGE formation in the h...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2014-06, Vol.289 (24), p.17111-17123
Main Authors: Linetsky, Mikhail, Raghavan, Cibin T., Johar, Kaid, Fan, Xingjun, Monnier, Vincent M., Vasavada, Abhay R., Nagaraj, Ram H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Advanced glycation end products (AGEs) contribute to lens protein pigmentation and cross-linking during aging and cataract formation. In vitro experiments have shown that ascorbate (ASC) oxidation products can form AGEs in proteins. However, the mechanisms of ASC oxidation and AGE formation in the human lens are poorly understood. Kynurenines are tryptophan oxidation products produced from the indoleamine 2,3-dioxygenase (IDO)-mediated kynurenine pathway and are present in the human lens. This study investigated the ability of UVA light-excited kynurenines to photooxidize ASC and to form AGEs in lens proteins. UVA light-excited kynurenines in both free and protein-bound forms rapidly oxidized ASC, and such oxidation occurred even in the absence of oxygen. High levels of GSH inhibited but did not completely block ASC oxidation. Upon UVA irradiation, pigmented proteins from human cataractous lenses also oxidized ASC. When exposed to UVA light (320–400 nm, 100 milliwatts/cm2, 45 min to 2 h), young human lenses (20–36 years), which contain high levels of free kynurenines, lost a significant portion of their ASC content and accumulated AGEs. A similar formation of AGEs was observed in UVA-irradiated lenses from human IDO/human sodium-dependent vitamin C transporter-2 mice, which contain high levels of kynurenines and ASC. Our data suggest that kynurenine-mediated ASC oxidation followed by AGE formation may be an important mechanism for lens aging and the development of senile cataracts in humans. Background: Human lens proteins accumulate pigmented, protein-cross-linked AGE adducts during cataract formation, and the mechanisms of their formation are poorly understood. Results: UVA-excited kynurenines can oxidize ascorbate under anoxic conditions and promote synthesis of AGEs. Conclusion: UVA light-excited kynurenines promote AGE synthesis and contribute to cataract formation. Significance: This study provides a mechanism for UVA light-mediated damage to lens proteins during cataract formation.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M114.554410