Loading…

Functional Characterization of Two Novel Mammalian Electrogenic Proton-dependent Amino Acid Cotransporters

We cloned two cDNAs encoding proton/amino acid cotransporters, designated as mPAT1 and mPAT2, from murine tissues. They were identified by sequence similarity to the amino acid/auxin permease family member of lower eukaryotes. We functionally characterized both transporters by flux studies and elect...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2002-06, Vol.277 (25), p.22966-22973
Main Authors: Boll, Michael, Foltz, Martin, Rubio-Aliaga, Isabel, Kottra, Gabor, Daniel, Hannelore
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We cloned two cDNAs encoding proton/amino acid cotransporters, designated as mPAT1 and mPAT2, from murine tissues. They were identified by sequence similarity to the amino acid/auxin permease family member of lower eukaryotes. We functionally characterized both transporters by flux studies and electrophysiology after expression in Xenopus laevis oocytes. Both mPAT1 and mPAT2 induced a pH-dependent electrogenic transport activity for small amino acids (glycine, alanine, and proline) that is altered by membrane potential. Direct evidence for amino acid/H+-symport was shown by intracellular acidification, and a flux coupling stoichiometry for proline/H+-symport of 1:1 was determined for both transporters. Besides small apolar l-amino acids, the transporters also recognize their d-enantiomers and selected amino acid derivatives such as γ-aminobutyric acid. The mPAT1 transporter, the murine orthologue of the recently cloned rat LYAAT-1 transporter, can be considered as a low affinity system when compared with mPAT2. The mRNA of mPAT1 is highly expressed in small intestine, colon, kidney, and brain; the mPAT2-mRNA is mainly found in heart and lung. Phenotypically, the PAT1 transporter possesses the same functional characteristics as the previously described proton-dependent amino acid transport process in apical membranes of intestinal and renal epithelial cells.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M200374200