Loading…
Novel CD8+ T Cell Antagonists Based on β2-Microglobulin
The CD8 coreceptor of cytotoxic T lymphocytes binds to a conserved region of major histocompatibility complex class I molecules during recognition of peptide-major histocompatibility complex (MHC) class I antigens on the surface of target cells. This event is central to the activation of cytotoxic T...
Saved in:
Published in: | The Journal of biological chemistry 2002-06, Vol.277 (23), p.20840-20846 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The CD8 coreceptor of cytotoxic T lymphocytes binds to a conserved region of major histocompatibility complex class I molecules during recognition of peptide-major histocompatibility complex (MHC) class I antigens on the surface of target cells. This event is central to the activation of cytotoxic T lymphocyte (CTL) effector functions. The contribution of the MHC complex class I light chain, β2-microglobulin, to CD8αα binding is relatively small and is mediated mainly through the lysine residue at position 58. Despite this, using molecular modeling, we predict that its mutation should have a dramatic effect on CD8αα binding. The predictions are confirmed using surface plasmon resonance binding studies and human CTL activation assays. Surprisingly, the charge-reversing mutation, Lys58 → Glu, enhances β2m-MHC class I heavy chain interactions. This mutation also significantly reduces CD8αα binding and is a potent antagonist of CTL activation. These results suggest a novel approach to CTL-specific therapeutic immunosuppression. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M201819200 |