Loading…

The Role of Electrostatic Interactions in Human Serum Albumin Binding and Stabilization by Halothane

Electrostatic interactions have been proposed as a potentially important force for anesthetics and protein binding but have not yet been tested directly. In the present study, we used wild-type human serum albumin (HSA) and specific site-directed mutants as a native protein model to investigate the...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2002-09, Vol.277 (39), p.36373-36379
Main Authors: Liu, Renyu, Pidikiti, Ravindernath, Ha, Chung-Eun, Petersen, Charles E., Bhagavan, Nadhipuram V., Eckenhoff, Roderic G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c409t-7572d72a6ae47f681a554a6866a7a791be51753ac56da8d909369f9d0742add43
cites cdi_FETCH-LOGICAL-c409t-7572d72a6ae47f681a554a6866a7a791be51753ac56da8d909369f9d0742add43
container_end_page 36379
container_issue 39
container_start_page 36373
container_title The Journal of biological chemistry
container_volume 277
creator Liu, Renyu
Pidikiti, Ravindernath
Ha, Chung-Eun
Petersen, Charles E.
Bhagavan, Nadhipuram V.
Eckenhoff, Roderic G.
description Electrostatic interactions have been proposed as a potentially important force for anesthetics and protein binding but have not yet been tested directly. In the present study, we used wild-type human serum albumin (HSA) and specific site-directed mutants as a native protein model to investigate the role of electrostatic interactions in halothane binding. Structural geometry analysis of the HSA-halothane complex predicted an absence of significant electrostatic interactions, and direct binding (tryptophan fluorescence and zonal elution chromatography) and stability experiments (hydrogen exchange) confirmed that loss of charge in the binding sites, by charged to uncharged mutations and by changing ionic strength of the buffer, generally increased both regional (tryptophan region) and global halothane/HSA affinity. The results indicate that electrostatic interactions (full charges) either do not contribute or diminish halothane binding to HSA, leaving only the more general hydrophobic and van der Waals forces as the major contributors to the binding interaction.
doi_str_mv 10.1074/jbc.M205479200
format article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1074_jbc_M205479200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925818366092</els_id><sourcerecordid>12118010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-7572d72a6ae47f681a554a6866a7a791be51753ac56da8d909369f9d0742add43</originalsourceid><addsrcrecordid>eNp1kE1r3DAQhkVp6G62vfZYdOjVG31YlnVMQ5INpAS6KfQmxtJ4rcWWg61tSX99FDawp8xlYHjeYeYh5Ctna850ebFv3PqnYKrURjD2gSw5q2UhFf_zkSwZE7wwQtULcj7Pe5arNPwTWXDBec04WxL_2CH9NfZIx5Ze9-jSNM4JUnD0LiacwKUwxpmGSDeHASLd4nQY6GXfHIY8-xGiD3FHIXq6TdCEPvyH1wRtnukG-jF1EPEzOWuhn_HLW1-R3zfXj1eb4v7h9u7q8r5wJTOp0EoLrwVUgKVuq5qDUiVUdVWBBm14g4prJcGpykPtDTOyMq3x2YMA70u5IuvjXpefmCds7dMUBpieLWf2VZfNuuxJVw58OwaeDs2A_oS_-cnA9yPQhV33L0xomzC6DgcrtLbSWFlJLTNWHzHM3_0NONnZBYwOfY64ZP0Y3jvhBZa4hJg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Role of Electrostatic Interactions in Human Serum Albumin Binding and Stabilization by Halothane</title><source>ScienceDirect®</source><creator>Liu, Renyu ; Pidikiti, Ravindernath ; Ha, Chung-Eun ; Petersen, Charles E. ; Bhagavan, Nadhipuram V. ; Eckenhoff, Roderic G.</creator><creatorcontrib>Liu, Renyu ; Pidikiti, Ravindernath ; Ha, Chung-Eun ; Petersen, Charles E. ; Bhagavan, Nadhipuram V. ; Eckenhoff, Roderic G.</creatorcontrib><description>Electrostatic interactions have been proposed as a potentially important force for anesthetics and protein binding but have not yet been tested directly. In the present study, we used wild-type human serum albumin (HSA) and specific site-directed mutants as a native protein model to investigate the role of electrostatic interactions in halothane binding. Structural geometry analysis of the HSA-halothane complex predicted an absence of significant electrostatic interactions, and direct binding (tryptophan fluorescence and zonal elution chromatography) and stability experiments (hydrogen exchange) confirmed that loss of charge in the binding sites, by charged to uncharged mutations and by changing ionic strength of the buffer, generally increased both regional (tryptophan region) and global halothane/HSA affinity. The results indicate that electrostatic interactions (full charges) either do not contribute or diminish halothane binding to HSA, leaving only the more general hydrophobic and van der Waals forces as the major contributors to the binding interaction.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M205479200</identifier><identifier>PMID: 12118010</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amides - chemistry ; Anesthetics, Inhalation - pharmacology ; Binding Sites ; Cloning, Molecular ; DNA, Complementary - metabolism ; Halothane - pharmacology ; Humans ; Hydrogen - metabolism ; Inhibitory Concentration 50 ; Ions ; Liver - metabolism ; Models, Molecular ; Mutagenesis, Site-Directed ; Mutation ; Protein Binding ; Protein Structure, Tertiary ; Recombinant Proteins - metabolism ; Serum Albumin - chemistry ; Serum Albumin - metabolism ; Spectrometry, Fluorescence ; Static Electricity ; Time Factors ; Tritium - metabolism ; Tryptophan - metabolism</subject><ispartof>The Journal of biological chemistry, 2002-09, Vol.277 (39), p.36373-36379</ispartof><rights>2002 © 2002 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-7572d72a6ae47f681a554a6866a7a791be51753ac56da8d909369f9d0742add43</citedby><cites>FETCH-LOGICAL-c409t-7572d72a6ae47f681a554a6866a7a791be51753ac56da8d909369f9d0742add43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925818366092$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27901,27902,45756</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12118010$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Renyu</creatorcontrib><creatorcontrib>Pidikiti, Ravindernath</creatorcontrib><creatorcontrib>Ha, Chung-Eun</creatorcontrib><creatorcontrib>Petersen, Charles E.</creatorcontrib><creatorcontrib>Bhagavan, Nadhipuram V.</creatorcontrib><creatorcontrib>Eckenhoff, Roderic G.</creatorcontrib><title>The Role of Electrostatic Interactions in Human Serum Albumin Binding and Stabilization by Halothane</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Electrostatic interactions have been proposed as a potentially important force for anesthetics and protein binding but have not yet been tested directly. In the present study, we used wild-type human serum albumin (HSA) and specific site-directed mutants as a native protein model to investigate the role of electrostatic interactions in halothane binding. Structural geometry analysis of the HSA-halothane complex predicted an absence of significant electrostatic interactions, and direct binding (tryptophan fluorescence and zonal elution chromatography) and stability experiments (hydrogen exchange) confirmed that loss of charge in the binding sites, by charged to uncharged mutations and by changing ionic strength of the buffer, generally increased both regional (tryptophan region) and global halothane/HSA affinity. The results indicate that electrostatic interactions (full charges) either do not contribute or diminish halothane binding to HSA, leaving only the more general hydrophobic and van der Waals forces as the major contributors to the binding interaction.</description><subject>Amides - chemistry</subject><subject>Anesthetics, Inhalation - pharmacology</subject><subject>Binding Sites</subject><subject>Cloning, Molecular</subject><subject>DNA, Complementary - metabolism</subject><subject>Halothane - pharmacology</subject><subject>Humans</subject><subject>Hydrogen - metabolism</subject><subject>Inhibitory Concentration 50</subject><subject>Ions</subject><subject>Liver - metabolism</subject><subject>Models, Molecular</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutation</subject><subject>Protein Binding</subject><subject>Protein Structure, Tertiary</subject><subject>Recombinant Proteins - metabolism</subject><subject>Serum Albumin - chemistry</subject><subject>Serum Albumin - metabolism</subject><subject>Spectrometry, Fluorescence</subject><subject>Static Electricity</subject><subject>Time Factors</subject><subject>Tritium - metabolism</subject><subject>Tryptophan - metabolism</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNp1kE1r3DAQhkVp6G62vfZYdOjVG31YlnVMQ5INpAS6KfQmxtJ4rcWWg61tSX99FDawp8xlYHjeYeYh5Ctna850ebFv3PqnYKrURjD2gSw5q2UhFf_zkSwZE7wwQtULcj7Pe5arNPwTWXDBec04WxL_2CH9NfZIx5Ze9-jSNM4JUnD0LiacwKUwxpmGSDeHASLd4nQY6GXfHIY8-xGiD3FHIXq6TdCEPvyH1wRtnukG-jF1EPEzOWuhn_HLW1-R3zfXj1eb4v7h9u7q8r5wJTOp0EoLrwVUgKVuq5qDUiVUdVWBBm14g4prJcGpykPtDTOyMq3x2YMA70u5IuvjXpefmCds7dMUBpieLWf2VZfNuuxJVw58OwaeDs2A_oS_-cnA9yPQhV33L0xomzC6DgcrtLbSWFlJLTNWHzHM3_0NONnZBYwOfY64ZP0Y3jvhBZa4hJg</recordid><startdate>20020927</startdate><enddate>20020927</enddate><creator>Liu, Renyu</creator><creator>Pidikiti, Ravindernath</creator><creator>Ha, Chung-Eun</creator><creator>Petersen, Charles E.</creator><creator>Bhagavan, Nadhipuram V.</creator><creator>Eckenhoff, Roderic G.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20020927</creationdate><title>The Role of Electrostatic Interactions in Human Serum Albumin Binding and Stabilization by Halothane</title><author>Liu, Renyu ; Pidikiti, Ravindernath ; Ha, Chung-Eun ; Petersen, Charles E. ; Bhagavan, Nadhipuram V. ; Eckenhoff, Roderic G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-7572d72a6ae47f681a554a6866a7a791be51753ac56da8d909369f9d0742add43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Amides - chemistry</topic><topic>Anesthetics, Inhalation - pharmacology</topic><topic>Binding Sites</topic><topic>Cloning, Molecular</topic><topic>DNA, Complementary - metabolism</topic><topic>Halothane - pharmacology</topic><topic>Humans</topic><topic>Hydrogen - metabolism</topic><topic>Inhibitory Concentration 50</topic><topic>Ions</topic><topic>Liver - metabolism</topic><topic>Models, Molecular</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutation</topic><topic>Protein Binding</topic><topic>Protein Structure, Tertiary</topic><topic>Recombinant Proteins - metabolism</topic><topic>Serum Albumin - chemistry</topic><topic>Serum Albumin - metabolism</topic><topic>Spectrometry, Fluorescence</topic><topic>Static Electricity</topic><topic>Time Factors</topic><topic>Tritium - metabolism</topic><topic>Tryptophan - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Renyu</creatorcontrib><creatorcontrib>Pidikiti, Ravindernath</creatorcontrib><creatorcontrib>Ha, Chung-Eun</creatorcontrib><creatorcontrib>Petersen, Charles E.</creatorcontrib><creatorcontrib>Bhagavan, Nadhipuram V.</creatorcontrib><creatorcontrib>Eckenhoff, Roderic G.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Renyu</au><au>Pidikiti, Ravindernath</au><au>Ha, Chung-Eun</au><au>Petersen, Charles E.</au><au>Bhagavan, Nadhipuram V.</au><au>Eckenhoff, Roderic G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Role of Electrostatic Interactions in Human Serum Albumin Binding and Stabilization by Halothane</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2002-09-27</date><risdate>2002</risdate><volume>277</volume><issue>39</issue><spage>36373</spage><epage>36379</epage><pages>36373-36379</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Electrostatic interactions have been proposed as a potentially important force for anesthetics and protein binding but have not yet been tested directly. In the present study, we used wild-type human serum albumin (HSA) and specific site-directed mutants as a native protein model to investigate the role of electrostatic interactions in halothane binding. Structural geometry analysis of the HSA-halothane complex predicted an absence of significant electrostatic interactions, and direct binding (tryptophan fluorescence and zonal elution chromatography) and stability experiments (hydrogen exchange) confirmed that loss of charge in the binding sites, by charged to uncharged mutations and by changing ionic strength of the buffer, generally increased both regional (tryptophan region) and global halothane/HSA affinity. The results indicate that electrostatic interactions (full charges) either do not contribute or diminish halothane binding to HSA, leaving only the more general hydrophobic and van der Waals forces as the major contributors to the binding interaction.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>12118010</pmid><doi>10.1074/jbc.M205479200</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2002-09, Vol.277 (39), p.36373-36379
issn 0021-9258
1083-351X
language eng
recordid cdi_crossref_primary_10_1074_jbc_M205479200
source ScienceDirect®
subjects Amides - chemistry
Anesthetics, Inhalation - pharmacology
Binding Sites
Cloning, Molecular
DNA, Complementary - metabolism
Halothane - pharmacology
Humans
Hydrogen - metabolism
Inhibitory Concentration 50
Ions
Liver - metabolism
Models, Molecular
Mutagenesis, Site-Directed
Mutation
Protein Binding
Protein Structure, Tertiary
Recombinant Proteins - metabolism
Serum Albumin - chemistry
Serum Albumin - metabolism
Spectrometry, Fluorescence
Static Electricity
Time Factors
Tritium - metabolism
Tryptophan - metabolism
title The Role of Electrostatic Interactions in Human Serum Albumin Binding and Stabilization by Halothane
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T13%3A27%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Role%20of%20Electrostatic%20Interactions%20in%20Human%20Serum%20Albumin%20Binding%20and%20Stabilization%20by%20Halothane&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Liu,%20Renyu&rft.date=2002-09-27&rft.volume=277&rft.issue=39&rft.spage=36373&rft.epage=36379&rft.pages=36373-36379&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M205479200&rft_dat=%3Cpubmed_cross%3E12118010%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c409t-7572d72a6ae47f681a554a6866a7a791be51753ac56da8d909369f9d0742add43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/12118010&rfr_iscdi=true