Loading…

Cloning and Characterization of a Mouse Endoplasmic Reticulum Alkaline Ceramidase

Ceramidases deacylate ceramides, important intermediates in the metabolic pathway of sphingolipids. In this study, we report the cloning and characterization of a novel mouse alkaline ceramidase (maCER1) with a highly restricted substrate specificity. maCER1 consists of 287 amino acids, and it has a...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2003-08, Vol.278 (33), p.31184-31191
Main Authors: Mao, Cungui, Xu, Ruijuan, Szulc, Zdzislaw M., Bielawski, Jacek, Becker, Kevin P., Bielawska, Alicja, Galadari, Sehamuddin H., Hu, Wei, Obeid, Lina M.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ceramidases deacylate ceramides, important intermediates in the metabolic pathway of sphingolipids. In this study, we report the cloning and characterization of a novel mouse alkaline ceramidase (maCER1) with a highly restricted substrate specificity. maCER1 consists of 287 amino acids, and it has a 28 and 32% identity to the Saccharomyces alkaline ceramidases (YPC1p and YDC1p) and the human alkaline phytoceramidase, respectively. Reverse transcriptase-PCR analysis demonstrated that maCER1 was predominantly expressed in skin. maCER1 was localized to the endoplasmic reticulum as revealed by immunocytochemistry. In vitro biochemical characterization determined that maCER1 hydrolyzed d-erythro-ceramide exclusively but not d-erythro-dihydroceramide or d-ribo-phytoceramide. Similar to other alkaline ceramidases, maCER1 had an alkaline pH optimum of 8.0, and it was activated by Ca2+ but inhibited by Zn2+,Cu2+, and Mn2+. maCER1 was also inhibited by sphingosine, one of its products. Metabolic labeling studies showed that overexpression of maCER1 caused a decrease in the incorporation of radiolabeled dihydrosphingosine into ceramide and complex sphingolipids but led to a concomitant increase in sphingosine-1-P (S1P) in HeLa cells. Mass measurement showed that overexpression of maCER1 selectively lowered the cellular levels of d-erythro-C24:1-ceramide, but not other ceramide species and caused an increase in the levels of S1P. Taken together, these data suggest that maCER1 is a novel alkaline ceramidase with a stringent substrate specificity and that maCER1 is selectively expressed in skin and may have a role in regulating the levels of bioactive lipids ceramide and S1P, as well as complex sphingolipids.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M303875200