Loading…

Molecular Mechanism of AMD3100 Antagonism in the CXCR4 Receptor

AMD3100 is a symmetric bicyclam, prototype non-peptide antagonist of the CXCR4 chemokine receptor. Mutational substitutions at 16 positions located in TM-III, -IV, -V, -VI, and -VII lining the main ligand-binding pocket of the CXCR4 receptor identified three acid residues: Asp171 (AspIV:20), Asp262...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2004-01, Vol.279 (4), p.3033-3041
Main Authors: Rosenkilde, Mette M., Gerlach, Lars-Ole, Jakobsen, Janus S., Skerlj, Renato T., Bridger, Gary J., Schwartz, Thue W.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:AMD3100 is a symmetric bicyclam, prototype non-peptide antagonist of the CXCR4 chemokine receptor. Mutational substitutions at 16 positions located in TM-III, -IV, -V, -VI, and -VII lining the main ligand-binding pocket of the CXCR4 receptor identified three acid residues: Asp171 (AspIV:20), Asp262 (AspVI:23), and Glu288 (GluVII:06) as the main interaction points for AMD3100. Molecular modeling suggests that one cyclam ring of AMD3100 interacts with Asp171 in TM-IV, whereas the other ring is sandwiched between the carboxylic acid groups of Asp262 and Glu288 from TM-VI and -VII, respectively. Metal ion binding in the cyclam rings of AMD3100 increased its dependence on Asp262 and provided a tighter molecular map of the binding site, where borderline mutational hits became clear hits for the Zn(II)-loaded analog. The proposed binding site for AMD3100 was confirmed by a gradual build-up in the rather distinct CXCR3 receptor, for which the compound normally had no effect. Introduction of only a Glu at position VII:06 and the removal of a neutralizing Lys residue at position VII:02 resulted in a 1000-fold increase in affinity of AMD3100 to within 10-fold of its affinity in CXCR4. We conclude that AMD3100 binds through interactions with essentially only three acidic anchor-point residues, two of which are located at one end and the third at the opposite end of the main ligand-binding pocket of the CXCR4 receptor. We suggest that non-peptide antagonists with, for example, improved oral bioavailability can be designed to mimic this interaction and thereby efficiently and selectively block the CXCR4 receptor.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M309546200