Loading…

A Subfamily of Acidic α-K+ Toxins

Three homologous acidic peptides have been isolated from the venom of three different Parabuthus scorpion species, P. transvaalicus, P. villosus, and P. granulatus. Analysis of the primary sequences reveals that they structurally belong to subfamily 11 of short chain α-K+-blocking peptides (Tytgat,...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2004-01, Vol.279 (4), p.2781-2789
Main Authors: Huys, Isabelle, Olamendi-Portugal, Timoteo, Garcia-Gómez, Blanca Ines, Vandenberghe, Isabel, Van Beeumen, Jozef, Dyason, Karin, Clynen, Elke, Zhu, Shunyi, van der Walt, Jurg, Possani, Lourival D., Tytgat, Jan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Three homologous acidic peptides have been isolated from the venom of three different Parabuthus scorpion species, P. transvaalicus, P. villosus, and P. granulatus. Analysis of the primary sequences reveals that they structurally belong to subfamily 11 of short chain α-K+-blocking peptides (Tytgat, J., Chandy, K. G., Garcia, M. L., Gutman, G. A., Martin-Eauclaire, M. F., van der Walt, J. J., and Possani, L. D. (1999) Trends Pharmacol. Sci. 20, 444–447). These toxins are 36–37 amino acids in length and have six aligned cysteine residues, but they differ substantially from the other α-K+ toxins because of the absence of the critical Lys27 and their total overall negative charge. Parabutoxin 1 (PBTx1), which has been expressed by recombinant methods, has been submitted to functional characterization. Despite the lack of the Lys27, this toxin blocks several Kv1-type channels heterologously expressed in Xenopus oocytes but with low affinities (micromolar range). Because a relationship between the biological activity and the acidic residue substitutions may exist, we set out to elucidate the relative impact of the acidic character of the toxin and the lack of the critical Lys27 on the weak activity of PBTx1 toward Kv1 channels. To achieve this, a specific mutant named rPBTx1 T24F/V26K was made recombinantly and fully characterized on Kv1-type channels heterologously expressed in Xenopus oocytes. Analysis of rPBTx1 T24F/V26K displaying an affinity toward Kv1.2 and Kv1.3 channels in the nanomolar range shows the importance of the functional dyad above the acidic character of this toxin.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M311029200