Loading…

Homer Protein Increases Activation of Ca2+ Sparks in Permeabilized Skeletal Muscle

Members of the Homer family of proteins are known to form multimeric complexes capable of cross-linking plasma membrane channels (e.g. metabotropic glutamate receptor) and intracellular Ca2+ release channels (e.g. inositol trisphosphate receptor) in neurons, which potentiates Ca2+ release. Recent wo...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2004-02, Vol.279 (7), p.5781-5787
Main Authors: Ward, Christopher W., Feng, Wei, Tu, Jiangchen, Pessah, Isaac N., Worley, Paul K., Schneider, Martin F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Members of the Homer family of proteins are known to form multimeric complexes capable of cross-linking plasma membrane channels (e.g. metabotropic glutamate receptor) and intracellular Ca2+ release channels (e.g. inositol trisphosphate receptor) in neurons, which potentiates Ca2+ release. Recent work has demonstrated direct interaction of Homer proteins with type 1 and type 2 ryanodine receptor (RyR) isoforms. Moreover, Homer proteins have been shown to modulate RyR-dependent Ca2+ release in isolated channels as well as in whole cell preparations. We now show that long and short forms of Homer H1 (H1c and H1-EVH1) are potent activators of Ca2+ release via RyR in skeletal muscle fibers (e.g. Ca2+ sparks) and potent modulators of ryanodine binding to membranes enriched with RyR, with H1c being significantly more potent than H1-EVH1. Homer did not significantly alter the spatio-temporal properties of the sparks, demonstrating that Homer increases the rate of opening of RyRs, with no change in the overall RyR channel open time and amount of Ca2+ released during a spark. No changes in Ca2+ spark frequency or properties were observed using a full-length H1c with mutation in the EVH1 binding domain (H1c-G89N). One novel finding with each Homer agonist (H1c and H1-EVH1) was that in combination their actions on [3H]ryanodine binding was additive, an effect also observed for these Homer agonists in the Ca2+ spark studies. Finally, in Ca2+ spark studies, excess H1c-G89N prevented the effects of H1c in a dominant negative manner. Taken together our results suggest that the EVH1 domain is critical for the agonist behavior on Ca2+ sparks and ryanodine binding, and that the coiled-coil domain, present in long but not short form Homer, confers an increase in agonist potential apparently through the multimeric association of Homer ligand.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M311422200