Loading…

Constitutive and Interleukin-1-inducible Phosphorylation of p65 NF-κB at Serine 536 Is Mediated by Multiple Protein Kinases Including IκB Kinase (IKK)-α, IKKβ, IKKϵ, TRAF Family Member-associated (TANK)-binding Kinase 1 (TBK1), and an Unknown Kinase and Couples p65 to TATA-binding Protein-associated Factor II31-mediated Interleukin-8 Transcription

Phosphorylation of NF-κB p65(RelA) serine 536 is physiologically induced in response to a variety of proinflammatory stimuli, but the responsible pathways have not been conclusively unraveled, and the function of this phosphorylation is largely elusive. In contrast to previous studies, we found no e...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2004-12, Vol.279 (53), p.55633-55643
Main Authors: Buss, Holger, Dörrie, Anneke, Schmitz, M. Lienhard, Hoffmann, Elke, Resch, Klaus, Kracht, Michael
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c328t-c83a4f99f7322ae05366c99384aebd1893c954f0e6f51a55d7416c2eafccada3
cites cdi_FETCH-LOGICAL-c328t-c83a4f99f7322ae05366c99384aebd1893c954f0e6f51a55d7416c2eafccada3
container_end_page 55643
container_issue 53
container_start_page 55633
container_title The Journal of biological chemistry
container_volume 279
creator Buss, Holger
Dörrie, Anneke
Schmitz, M. Lienhard
Hoffmann, Elke
Resch, Klaus
Kracht, Michael
description Phosphorylation of NF-κB p65(RelA) serine 536 is physiologically induced in response to a variety of proinflammatory stimuli, but the responsible pathways have not been conclusively unraveled, and the function of this phosphorylation is largely elusive. In contrast to previous studies, we found no evidence for a role of c-Jun N-terminal kinase, p38 kinase, extracellular signal-regulated kinase, or phosphatidylinositol 3-kinase in interleukin-1- or tumor necrosis factor-induced Ser-536 phosphorylation, as revealed by pharmacological inhibitors. We were not able to suppress Ser-536 phosphorylation by either RNA interference directed at IκB kinase (IKK)-α/β (the best characterized Ser-536 kinases so far) or the IKKβ inhibitor SC-514 or dominant negative mutants of either IKK. A green fluorescent protein p65 fusion protein was phosphorylated at Ser-536 in the absence of IKK activation, suggesting the existence of IKKα/β-independent Ser-536 kinases. Chromatographic fractionation of cell extracts allowed the identification of two distinct enzymatic activities phosphorylating Ser-536. Peak 1 represents an unknown kinase, whereas peak 2 contained IKKα, IKKβ, IKKϵ, and TBK1. Overexpressed IKKϵ and TBK1 phosphorylate Ser-536 in vivo and in vitro. Reconstitution of mutant p65 proteins in p65-deficient fibroblasts that either mimicked phosphorylation (S536D) or preserved a predicted hydrogen bond between Ser-536 and Asp-533 (S536N) revealed that phosphorylation of Ser-536 favors interleukin-8 transcription mediated by TATA-binding protein-associated factor II31, a component of TFIID. In the absence of phosphorylation, the hydrogen bond favors binding of the corepressor amino-terminal enhancer of split to the p65 terminal transactivation domain. Collectively, our results provide evidence for at least five kinases that converge on Ser-536 of p65 and a novel function for this phosphorylation site in the recruitment of components of the basal transcriptional machinery to the interleukin-8 promoter.
doi_str_mv 10.1074/jbc.M409825200
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1074_jbc_M409825200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925818663306</els_id><sourcerecordid>S0021925818663306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-c83a4f99f7322ae05366c99384aebd1893c954f0e6f51a55d7416c2eafccada3</originalsourceid><addsrcrecordid>eNp1ks9u00AQxg0CiVC4cp5jK2XDrv8k9jGNMLXSFARG4mat12O6rbMb7a6L8lhF4sJDhFdinaTQC3uZ1Ujfb75vNEHwhtEJo7P47U0tJquYZmmYhJQ-DUaMphGJEvb1WTCiNGQkC5P0RfDS2hvqX5yx0ZN6oZV10vVO3iFw1UChHJoO-1upCCNSNb2QdYfw8VrbzbU22447qRXoFjbTBK5ysvt1DtzBZzRSISTRFAoLK2wkd9hAvYVV3zm5GRhGO5QKllJxi9bPEl3fSPUNigFyaMNpsVyekd39GPxn92Nffv8cQ_lpnkPO17LzSFzXaAi3VovDnNNyfuVltXc8AI8s5vvnS3Y23mfjCr6oW6W_P1jYdxe69-bsPo7TUM7L-V_M0fHjQTkXThsoioiR9UPKx1tLoTRcWWHkZtjUq-B5yzuLr4_1JCjzd-Xiglx-eF8s5pdERGHqiEgjHrdZ1s6iMORI_R6nIsuiNOZYNyzNIpElcUtx2iaMJ0kzi9lUhMhbIXjDo5NgcsAKo6012FYbI9fcbCtGq-FAKn8g1b8D8YL0IEBv6k6iqayQqISPZFC4qtHyf9I_8IfGXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Constitutive and Interleukin-1-inducible Phosphorylation of p65 NF-κB at Serine 536 Is Mediated by Multiple Protein Kinases Including IκB Kinase (IKK)-α, IKKβ, IKKϵ, TRAF Family Member-associated (TANK)-binding Kinase 1 (TBK1), and an Unknown Kinase and Couples p65 to TATA-binding Protein-associated Factor II31-mediated Interleukin-8 Transcription</title><source>ScienceDirect Additional Titles</source><creator>Buss, Holger ; Dörrie, Anneke ; Schmitz, M. Lienhard ; Hoffmann, Elke ; Resch, Klaus ; Kracht, Michael</creator><creatorcontrib>Buss, Holger ; Dörrie, Anneke ; Schmitz, M. Lienhard ; Hoffmann, Elke ; Resch, Klaus ; Kracht, Michael</creatorcontrib><description>Phosphorylation of NF-κB p65(RelA) serine 536 is physiologically induced in response to a variety of proinflammatory stimuli, but the responsible pathways have not been conclusively unraveled, and the function of this phosphorylation is largely elusive. In contrast to previous studies, we found no evidence for a role of c-Jun N-terminal kinase, p38 kinase, extracellular signal-regulated kinase, or phosphatidylinositol 3-kinase in interleukin-1- or tumor necrosis factor-induced Ser-536 phosphorylation, as revealed by pharmacological inhibitors. We were not able to suppress Ser-536 phosphorylation by either RNA interference directed at IκB kinase (IKK)-α/β (the best characterized Ser-536 kinases so far) or the IKKβ inhibitor SC-514 or dominant negative mutants of either IKK. A green fluorescent protein p65 fusion protein was phosphorylated at Ser-536 in the absence of IKK activation, suggesting the existence of IKKα/β-independent Ser-536 kinases. Chromatographic fractionation of cell extracts allowed the identification of two distinct enzymatic activities phosphorylating Ser-536. Peak 1 represents an unknown kinase, whereas peak 2 contained IKKα, IKKβ, IKKϵ, and TBK1. Overexpressed IKKϵ and TBK1 phosphorylate Ser-536 in vivo and in vitro. Reconstitution of mutant p65 proteins in p65-deficient fibroblasts that either mimicked phosphorylation (S536D) or preserved a predicted hydrogen bond between Ser-536 and Asp-533 (S536N) revealed that phosphorylation of Ser-536 favors interleukin-8 transcription mediated by TATA-binding protein-associated factor II31, a component of TFIID. In the absence of phosphorylation, the hydrogen bond favors binding of the corepressor amino-terminal enhancer of split to the p65 terminal transactivation domain. Collectively, our results provide evidence for at least five kinases that converge on Ser-536 of p65 and a novel function for this phosphorylation site in the recruitment of components of the basal transcriptional machinery to the interleukin-8 promoter.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M409825200</identifier><language>eng</language><publisher>Elsevier Inc</publisher><ispartof>The Journal of biological chemistry, 2004-12, Vol.279 (53), p.55633-55643</ispartof><rights>2004 © 2004 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-c83a4f99f7322ae05366c99384aebd1893c954f0e6f51a55d7416c2eafccada3</citedby><cites>FETCH-LOGICAL-c328t-c83a4f99f7322ae05366c99384aebd1893c954f0e6f51a55d7416c2eafccada3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925818663306$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids></links><search><creatorcontrib>Buss, Holger</creatorcontrib><creatorcontrib>Dörrie, Anneke</creatorcontrib><creatorcontrib>Schmitz, M. Lienhard</creatorcontrib><creatorcontrib>Hoffmann, Elke</creatorcontrib><creatorcontrib>Resch, Klaus</creatorcontrib><creatorcontrib>Kracht, Michael</creatorcontrib><title>Constitutive and Interleukin-1-inducible Phosphorylation of p65 NF-κB at Serine 536 Is Mediated by Multiple Protein Kinases Including IκB Kinase (IKK)-α, IKKβ, IKKϵ, TRAF Family Member-associated (TANK)-binding Kinase 1 (TBK1), and an Unknown Kinase and Couples p65 to TATA-binding Protein-associated Factor II31-mediated Interleukin-8 Transcription</title><title>The Journal of biological chemistry</title><description>Phosphorylation of NF-κB p65(RelA) serine 536 is physiologically induced in response to a variety of proinflammatory stimuli, but the responsible pathways have not been conclusively unraveled, and the function of this phosphorylation is largely elusive. In contrast to previous studies, we found no evidence for a role of c-Jun N-terminal kinase, p38 kinase, extracellular signal-regulated kinase, or phosphatidylinositol 3-kinase in interleukin-1- or tumor necrosis factor-induced Ser-536 phosphorylation, as revealed by pharmacological inhibitors. We were not able to suppress Ser-536 phosphorylation by either RNA interference directed at IκB kinase (IKK)-α/β (the best characterized Ser-536 kinases so far) or the IKKβ inhibitor SC-514 or dominant negative mutants of either IKK. A green fluorescent protein p65 fusion protein was phosphorylated at Ser-536 in the absence of IKK activation, suggesting the existence of IKKα/β-independent Ser-536 kinases. Chromatographic fractionation of cell extracts allowed the identification of two distinct enzymatic activities phosphorylating Ser-536. Peak 1 represents an unknown kinase, whereas peak 2 contained IKKα, IKKβ, IKKϵ, and TBK1. Overexpressed IKKϵ and TBK1 phosphorylate Ser-536 in vivo and in vitro. Reconstitution of mutant p65 proteins in p65-deficient fibroblasts that either mimicked phosphorylation (S536D) or preserved a predicted hydrogen bond between Ser-536 and Asp-533 (S536N) revealed that phosphorylation of Ser-536 favors interleukin-8 transcription mediated by TATA-binding protein-associated factor II31, a component of TFIID. In the absence of phosphorylation, the hydrogen bond favors binding of the corepressor amino-terminal enhancer of split to the p65 terminal transactivation domain. Collectively, our results provide evidence for at least five kinases that converge on Ser-536 of p65 and a novel function for this phosphorylation site in the recruitment of components of the basal transcriptional machinery to the interleukin-8 promoter.</description><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp1ks9u00AQxg0CiVC4cp5jK2XDrv8k9jGNMLXSFARG4mat12O6rbMb7a6L8lhF4sJDhFdinaTQC3uZ1Ujfb75vNEHwhtEJo7P47U0tJquYZmmYhJQ-DUaMphGJEvb1WTCiNGQkC5P0RfDS2hvqX5yx0ZN6oZV10vVO3iFw1UChHJoO-1upCCNSNb2QdYfw8VrbzbU22447qRXoFjbTBK5ysvt1DtzBZzRSISTRFAoLK2wkd9hAvYVV3zm5GRhGO5QKllJxi9bPEl3fSPUNigFyaMNpsVyekd39GPxn92Nffv8cQ_lpnkPO17LzSFzXaAi3VovDnNNyfuVltXc8AI8s5vvnS3Y23mfjCr6oW6W_P1jYdxe69-bsPo7TUM7L-V_M0fHjQTkXThsoioiR9UPKx1tLoTRcWWHkZtjUq-B5yzuLr4_1JCjzd-Xiglx-eF8s5pdERGHqiEgjHrdZ1s6iMORI_R6nIsuiNOZYNyzNIpElcUtx2iaMJ0kzi9lUhMhbIXjDo5NgcsAKo6012FYbI9fcbCtGq-FAKn8g1b8D8YL0IEBv6k6iqayQqISPZFC4qtHyf9I_8IfGXg</recordid><startdate>20041231</startdate><enddate>20041231</enddate><creator>Buss, Holger</creator><creator>Dörrie, Anneke</creator><creator>Schmitz, M. Lienhard</creator><creator>Hoffmann, Elke</creator><creator>Resch, Klaus</creator><creator>Kracht, Michael</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20041231</creationdate><title>Constitutive and Interleukin-1-inducible Phosphorylation of p65 NF-κB at Serine 536 Is Mediated by Multiple Protein Kinases Including IκB Kinase (IKK)-α, IKKβ, IKKϵ, TRAF Family Member-associated (TANK)-binding Kinase 1 (TBK1), and an Unknown Kinase and Couples p65 to TATA-binding Protein-associated Factor II31-mediated Interleukin-8 Transcription</title><author>Buss, Holger ; Dörrie, Anneke ; Schmitz, M. Lienhard ; Hoffmann, Elke ; Resch, Klaus ; Kracht, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-c83a4f99f7322ae05366c99384aebd1893c954f0e6f51a55d7416c2eafccada3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buss, Holger</creatorcontrib><creatorcontrib>Dörrie, Anneke</creatorcontrib><creatorcontrib>Schmitz, M. Lienhard</creatorcontrib><creatorcontrib>Hoffmann, Elke</creatorcontrib><creatorcontrib>Resch, Klaus</creatorcontrib><creatorcontrib>Kracht, Michael</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buss, Holger</au><au>Dörrie, Anneke</au><au>Schmitz, M. Lienhard</au><au>Hoffmann, Elke</au><au>Resch, Klaus</au><au>Kracht, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constitutive and Interleukin-1-inducible Phosphorylation of p65 NF-κB at Serine 536 Is Mediated by Multiple Protein Kinases Including IκB Kinase (IKK)-α, IKKβ, IKKϵ, TRAF Family Member-associated (TANK)-binding Kinase 1 (TBK1), and an Unknown Kinase and Couples p65 to TATA-binding Protein-associated Factor II31-mediated Interleukin-8 Transcription</atitle><jtitle>The Journal of biological chemistry</jtitle><date>2004-12-31</date><risdate>2004</risdate><volume>279</volume><issue>53</issue><spage>55633</spage><epage>55643</epage><pages>55633-55643</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Phosphorylation of NF-κB p65(RelA) serine 536 is physiologically induced in response to a variety of proinflammatory stimuli, but the responsible pathways have not been conclusively unraveled, and the function of this phosphorylation is largely elusive. In contrast to previous studies, we found no evidence for a role of c-Jun N-terminal kinase, p38 kinase, extracellular signal-regulated kinase, or phosphatidylinositol 3-kinase in interleukin-1- or tumor necrosis factor-induced Ser-536 phosphorylation, as revealed by pharmacological inhibitors. We were not able to suppress Ser-536 phosphorylation by either RNA interference directed at IκB kinase (IKK)-α/β (the best characterized Ser-536 kinases so far) or the IKKβ inhibitor SC-514 or dominant negative mutants of either IKK. A green fluorescent protein p65 fusion protein was phosphorylated at Ser-536 in the absence of IKK activation, suggesting the existence of IKKα/β-independent Ser-536 kinases. Chromatographic fractionation of cell extracts allowed the identification of two distinct enzymatic activities phosphorylating Ser-536. Peak 1 represents an unknown kinase, whereas peak 2 contained IKKα, IKKβ, IKKϵ, and TBK1. Overexpressed IKKϵ and TBK1 phosphorylate Ser-536 in vivo and in vitro. Reconstitution of mutant p65 proteins in p65-deficient fibroblasts that either mimicked phosphorylation (S536D) or preserved a predicted hydrogen bond between Ser-536 and Asp-533 (S536N) revealed that phosphorylation of Ser-536 favors interleukin-8 transcription mediated by TATA-binding protein-associated factor II31, a component of TFIID. In the absence of phosphorylation, the hydrogen bond favors binding of the corepressor amino-terminal enhancer of split to the p65 terminal transactivation domain. Collectively, our results provide evidence for at least five kinases that converge on Ser-536 of p65 and a novel function for this phosphorylation site in the recruitment of components of the basal transcriptional machinery to the interleukin-8 promoter.</abstract><pub>Elsevier Inc</pub><doi>10.1074/jbc.M409825200</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2004-12, Vol.279 (53), p.55633-55643
issn 0021-9258
1083-351X
language eng
recordid cdi_crossref_primary_10_1074_jbc_M409825200
source ScienceDirect Additional Titles
title Constitutive and Interleukin-1-inducible Phosphorylation of p65 NF-κB at Serine 536 Is Mediated by Multiple Protein Kinases Including IκB Kinase (IKK)-α, IKKβ, IKKϵ, TRAF Family Member-associated (TANK)-binding Kinase 1 (TBK1), and an Unknown Kinase and Couples p65 to TATA-binding Protein-associated Factor II31-mediated Interleukin-8 Transcription
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A32%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constitutive%20and%20Interleukin-1-inducible%20Phosphorylation%20of%20p65%20NF-%CE%BAB%20at%20Serine%20536%20Is%20Mediated%20by%20Multiple%20Protein%20Kinases%20Including%20I%CE%BAB%20Kinase%20(IKK)-%CE%B1,%20IKK%CE%B2,%20IKK%CF%B5,%20TRAF%20Family%20Member-associated%20(TANK)-binding%20Kinase%201%20(TBK1),%20and%20an%20Unknown%20Kinase%20and%20Couples%20p65%20to%20TATA-binding%20Protein-associated%20Factor%20II31-mediated%20Interleukin-8%20Transcription&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Buss,%20Holger&rft.date=2004-12-31&rft.volume=279&rft.issue=53&rft.spage=55633&rft.epage=55643&rft.pages=55633-55643&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M409825200&rft_dat=%3Celsevier_cross%3ES0021925818663306%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c328t-c83a4f99f7322ae05366c99384aebd1893c954f0e6f51a55d7416c2eafccada3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true