Loading…
The Multidrug Efflux Regulator TtgV Recognizes a Wide Range of Structurally Different Effectors in Solution and Complexed with Target DNA
TtgV modulates the expression of the ttgGHI operon, which encodes an efflux pump that extrudes a wide variety of chemicals including mono- and binuclear aromatic hydrocarbons, aliphatic alcohols, and antibiotics of dissimilar chemical structure. Using a ′lacZ fusion to the ttgG promoter, we show tha...
Saved in:
Published in: | The Journal of biological chemistry 2005-05, Vol.280 (21), p.20887-20893 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | TtgV modulates the expression of the ttgGHI operon, which encodes an efflux pump that extrudes a wide variety of chemicals including mono- and binuclear aromatic hydrocarbons, aliphatic alcohols, and antibiotics of dissimilar chemical structure. Using a ′lacZ fusion to the ttgG promoter, we show that the most efficient in vivo inducers were 1-naphthol, 2,3-dihydroxynaphthalene, 4-nitrotoluene, benzonitrile, and indole. The thermodynamic parameters for the binding of different effector molecules to purified TtgV were determined by isothermal titration calorimetry. For the majority of effectors, the interaction was enthalpy-driven and counterbalance by unfavorable entropy changes. The TtgV-effector dissociation constants were found to vary between 2 and 890 μm. There was a relationship between TtgV affinity for the different effectors and their potential to induce gene expression in vivo, indicating that the effector binding constant is a major determinant for efficient efflux pump gene expression. Equilibrium dialysis and isothermal titration calorimetry studies indicated that a TtgV dimer binds one effector molecule. No evidence for the simultaneous binding of multiple effectors to TtgV was obtained. The binding of TtgV to a 63-bp DNA fragment containing its cognate operator was tight and entropy-driven (KD = 2.4 ± 0.35 nm, ΔH = 5.5 ± 0.04 kcal/mol). The TtgV-DNA complex was shown to bind 1-napthol with an affinity comparable with the free soluble TtgV protein, KD = 4.8 ± 0.19 and 3.0 ± 0.15 μm, respectively. The biological relevance of this finding is discussed. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M500783200 |