Loading…
Antianoikis Effect of Nuclear Factor-κB through Up-regulated Expression of Osteoprotegerin, BCL-2, and IAP-1
Epithelial cells undergo a form of apoptosis termed anoikis when they lose extracellular attachments. We evaluated the role of transcription factor NF-κB in the regulation of anoikis susceptibility of intestinal epithelial cells. Culture of rat intestinal epithelial cells in suspension induced NF-κB...
Saved in:
Published in: | The Journal of biological chemistry 2006-03, Vol.281 (13), p.8686-8696 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Epithelial cells undergo a form of apoptosis termed anoikis when they lose extracellular attachments. We evaluated the role of transcription factor NF-κB in the regulation of anoikis susceptibility of intestinal epithelial cells. Culture of rat intestinal epithelial cells in suspension induced NF-κB activation, which blocked the anoikis of those cells, as assessed by internucleosomal DNA fragmentation and caspase-3 cleavage. Activation of NF-κB after the loss of extracellular attachments required focal adhesion kinase tyrosine 397 phosphorylation. This triggered a signaling cascade through phosphatidylinositol 3-kinase and AKT, to induce DNA binding of the RelA/p65 NF-κB polypeptide. NF-κB activated in this manner induced the up-regulated expression of a distinct program of genes that included osteoprotegerin, BCL-2, and IAP-1 (inhibitor of apoptosis protein-1). Chromatin immunoprecipitation experiments revealed that NF-κB directly regulated the promoters of these 3 genes. Knock-down of the expression of osteoprotegerin, BCL-2, or inhibitor of apoptosis protein-1 by RNA interference showed that these factors inhibit anoikis, and genetic reconstitution of their expression alone or in combination restored normal levels of anoikis to NF-κB-inactive intestinal epithelial cells. Together, these findings have identified the molecular components of a previously unrecognized antianoikis pathway in intestinal epithelial cells. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M512178200 |