Loading…

Secretory Granule Biogenesis in Sympathoadrenal Cells

Chromogranin A (CgA) may be critical for secretory granule biogenesis in sympathoadrenal cells. We found that silencing the expression of CgA reduced the number of secretory granules in normal sympathoadrenal cells (PC12), and we therefore questioned whether a discrete domain of CgA might promote th...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2006-12, Vol.281 (49), p.38038-38051
Main Authors: Courel, Maïté, Rodemer, Carrie, Nguyen, Susan T., Pance, Alena, Jackson, Antony P., O'Connor, Daniel T., Taupenot, Laurent
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Chromogranin A (CgA) may be critical for secretory granule biogenesis in sympathoadrenal cells. We found that silencing the expression of CgA reduced the number of secretory granules in normal sympathoadrenal cells (PC12), and we therefore questioned whether a discrete domain of CgA might promote the formation of a regulated secretory pathway in variant sympathoadrenal cells (A35C) devoid of such a phenotype. The secretory granule-forming activity of a series of human CgA domains labeled with a hemagglutinin epitope, green fluorescent protein, or embryonic alkaline phosphatase was assessed in A35C cells by deconvolution and electron microscopy and by secretagogue-stimulated release assays. Expression of CgA in A35C cells induced the formation of vesicular organelles throughout the cytoplasm, whereas two constitutive secretory pathway markers accumulated in the Golgi complex. The lysosome-associated membrane protein LGP110 did not co-localize with CgA, consistent with non-lysosomal targeting of the granin in A35C cells. Thus, CgA-expressing A35C cells showed electron-dense granules ∼180-220 nm in diameter, and secretagogue-stimulated exocytosis of CgA from A35C cells suggested that expression of the granin may be sufficient to restore a regulated secretory pathway and thereby rescue the sorting of other secretory proteins. We show that the formation of vesicular structures destined for regulated exocytosis may be mediated by a determinant located within the CgA N-terminal region (CgA-(1-115), with a necessary contribution of CgA-(40-115)), but not the C-terminal region (CgA-(233-439)) of the protein. We propose that CgA promotes the biogenesis of secretory granules by a mechanism involving a granulogenic determinant located within CgA-(40-115) of the mature protein.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M604037200