Loading…
Catalase Takes Part in Rat Liver Mitochondria Oxidative Stress Defense
Highly purified rat liver mitochondria (RLM) when exposed to tert-butylhydroperoxide undergo matrix swelling, membrane potential collapse, and oxidation of glutathione and pyridine nucleotides, all events attributable to the induction of mitochondrial permeability transition. Instead, RLM, if treate...
Saved in:
Published in: | The Journal of biological chemistry 2007-08, Vol.282 (33), p.24407-24415 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c411t-f18a06999c0ccc813bfbee910b512947608837f53be22e6497280d8a0fa03f5e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c411t-f18a06999c0ccc813bfbee910b512947608837f53be22e6497280d8a0fa03f5e3 |
container_end_page | 24415 |
container_issue | 33 |
container_start_page | 24407 |
container_title | The Journal of biological chemistry |
container_volume | 282 |
creator | Salvi, Mauro Battaglia, Valentina Brunati, Anna Maria La Rocca, Nicoletta Tibaldi, Elena Pietrangeli, Paola Marcocci, Lucia Mondovi, Bruno Rossi, Carlo A. Toninello, Antonio |
description | Highly purified rat liver mitochondria (RLM) when exposed to tert-butylhydroperoxide undergo matrix swelling, membrane potential collapse, and oxidation of glutathione and pyridine nucleotides, all events attributable to the induction of mitochondrial permeability transition. Instead, RLM, if treated with the same or higher amounts of H2O2 or tyramine, are insensitive or only partially sensitive, respectively, to mitochondrial permeability transition. In addition, the block of respiration by antimycin A added to RLM respiring in state 4 conditions, or the addition of H2O2, results in O2 generation, which is blocked by the catalase inhibitors aminotriazole or KCN. In this regard, H2O2 decomposition yields molecular oxygen in a 2:1 stoichiometry, consistent with a catalatic mechanism with a rate constant of 0.0346 s-1. The rate of H2O2 consumption is not influenced by respiratory substrates, succinate or glutamate-malate, nor by N-ethylmaleimide, suggesting that cytochrome c oxidase and the glutathione-glutathione peroxidase system are not significantly involved in this process. Instead, H2O2 consumption is considerably inhibited by KCN or aminotriazole, indicating activity by a hemoprotein. All these observations are compatible with the presence of endogenous heme-containing catalase with an activity of 825 ± 15 units, which contributes to mitochondrial protection against endogenous or exogenous H2O2. Mitochondrial catalase in liver most probably represents regulatory control of bioenergetic metabolism, but it may also be proposed for new therapeutic strategies against liver diseases. The constitutive presence of catalase inside mitochondria is demonstrated by several methodological approaches as follows: biochemical fractionating, proteinase K sensitivity, and immunogold electron microscopy on isolated RLM and whole rat liver tissue. |
doi_str_mv | 10.1074/jbc.M701589200 |
format | article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1074_jbc_M701589200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820544256</els_id><sourcerecordid>17576767</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-f18a06999c0ccc813bfbee910b512947608837f53be22e6497280d8a0fa03f5e3</originalsourceid><addsrcrecordid>eNp1kEFPAjEQhRujEUSvHk0PXhen7S7bHg2KmkAwiom3ptudlSKwpF1R_70lS8LJmcMkk-9N5j1CLhn0GeTpzaKw_UkOLJOKAxyRLgMpEpGx92PSBeAsUTyTHXIWwgJipYqdkg7Ls3wQu0tGQ9OYpQlIZ-YTA302vqFuTV9MQ8dui55OXFPbeb0uvTN0-uNK08Q9fW08hkDvsMJ1wHNyUpllwIv97JG30f1s-JiMpw9Pw9txYlPGmqRi0sBAKWXBWiuZKKoCUTEoMsZVmg9ASpFXmSiQcxykKucSyqipDIgqQ9Ej_fau9XUIHiu98W5l_K9moHeB6BiIPgQSBVetYPNVrLA84PsEInDdAnP3Mf92HnXhol9caS65FkLzNIUdJlsMo7utQ6-Ddbi2WEaJbXRZu_9e-AMFg3mV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Catalase Takes Part in Rat Liver Mitochondria Oxidative Stress Defense</title><source>Elsevier ScienceDirect Journals</source><source>PubMed Central</source><creator>Salvi, Mauro ; Battaglia, Valentina ; Brunati, Anna Maria ; La Rocca, Nicoletta ; Tibaldi, Elena ; Pietrangeli, Paola ; Marcocci, Lucia ; Mondovi, Bruno ; Rossi, Carlo A. ; Toninello, Antonio</creator><creatorcontrib>Salvi, Mauro ; Battaglia, Valentina ; Brunati, Anna Maria ; La Rocca, Nicoletta ; Tibaldi, Elena ; Pietrangeli, Paola ; Marcocci, Lucia ; Mondovi, Bruno ; Rossi, Carlo A. ; Toninello, Antonio</creatorcontrib><description>Highly purified rat liver mitochondria (RLM) when exposed to tert-butylhydroperoxide undergo matrix swelling, membrane potential collapse, and oxidation of glutathione and pyridine nucleotides, all events attributable to the induction of mitochondrial permeability transition. Instead, RLM, if treated with the same or higher amounts of H2O2 or tyramine, are insensitive or only partially sensitive, respectively, to mitochondrial permeability transition. In addition, the block of respiration by antimycin A added to RLM respiring in state 4 conditions, or the addition of H2O2, results in O2 generation, which is blocked by the catalase inhibitors aminotriazole or KCN. In this regard, H2O2 decomposition yields molecular oxygen in a 2:1 stoichiometry, consistent with a catalatic mechanism with a rate constant of 0.0346 s-1. The rate of H2O2 consumption is not influenced by respiratory substrates, succinate or glutamate-malate, nor by N-ethylmaleimide, suggesting that cytochrome c oxidase and the glutathione-glutathione peroxidase system are not significantly involved in this process. Instead, H2O2 consumption is considerably inhibited by KCN or aminotriazole, indicating activity by a hemoprotein. All these observations are compatible with the presence of endogenous heme-containing catalase with an activity of 825 ± 15 units, which contributes to mitochondrial protection against endogenous or exogenous H2O2. Mitochondrial catalase in liver most probably represents regulatory control of bioenergetic metabolism, but it may also be proposed for new therapeutic strategies against liver diseases. The constitutive presence of catalase inside mitochondria is demonstrated by several methodological approaches as follows: biochemical fractionating, proteinase K sensitivity, and immunogold electron microscopy on isolated RLM and whole rat liver tissue.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M701589200</identifier><identifier>PMID: 17576767</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Catalase - analysis ; Catalase - physiology ; Energy Metabolism ; Hydrogen Peroxide - pharmacology ; Intracellular Membranes - metabolism ; Kinetics ; Mitochondria, Liver - enzymology ; Mitochondria, Liver - metabolism ; Oxidative Stress ; Oxygen - metabolism ; Permeability ; Rats</subject><ispartof>The Journal of biological chemistry, 2007-08, Vol.282 (33), p.24407-24415</ispartof><rights>2007 © 2007 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-f18a06999c0ccc813bfbee910b512947608837f53be22e6497280d8a0fa03f5e3</citedby><cites>FETCH-LOGICAL-c411t-f18a06999c0ccc813bfbee910b512947608837f53be22e6497280d8a0fa03f5e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925820544256$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27901,27902,45756</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17576767$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Salvi, Mauro</creatorcontrib><creatorcontrib>Battaglia, Valentina</creatorcontrib><creatorcontrib>Brunati, Anna Maria</creatorcontrib><creatorcontrib>La Rocca, Nicoletta</creatorcontrib><creatorcontrib>Tibaldi, Elena</creatorcontrib><creatorcontrib>Pietrangeli, Paola</creatorcontrib><creatorcontrib>Marcocci, Lucia</creatorcontrib><creatorcontrib>Mondovi, Bruno</creatorcontrib><creatorcontrib>Rossi, Carlo A.</creatorcontrib><creatorcontrib>Toninello, Antonio</creatorcontrib><title>Catalase Takes Part in Rat Liver Mitochondria Oxidative Stress Defense</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Highly purified rat liver mitochondria (RLM) when exposed to tert-butylhydroperoxide undergo matrix swelling, membrane potential collapse, and oxidation of glutathione and pyridine nucleotides, all events attributable to the induction of mitochondrial permeability transition. Instead, RLM, if treated with the same or higher amounts of H2O2 or tyramine, are insensitive or only partially sensitive, respectively, to mitochondrial permeability transition. In addition, the block of respiration by antimycin A added to RLM respiring in state 4 conditions, or the addition of H2O2, results in O2 generation, which is blocked by the catalase inhibitors aminotriazole or KCN. In this regard, H2O2 decomposition yields molecular oxygen in a 2:1 stoichiometry, consistent with a catalatic mechanism with a rate constant of 0.0346 s-1. The rate of H2O2 consumption is not influenced by respiratory substrates, succinate or glutamate-malate, nor by N-ethylmaleimide, suggesting that cytochrome c oxidase and the glutathione-glutathione peroxidase system are not significantly involved in this process. Instead, H2O2 consumption is considerably inhibited by KCN or aminotriazole, indicating activity by a hemoprotein. All these observations are compatible with the presence of endogenous heme-containing catalase with an activity of 825 ± 15 units, which contributes to mitochondrial protection against endogenous or exogenous H2O2. Mitochondrial catalase in liver most probably represents regulatory control of bioenergetic metabolism, but it may also be proposed for new therapeutic strategies against liver diseases. The constitutive presence of catalase inside mitochondria is demonstrated by several methodological approaches as follows: biochemical fractionating, proteinase K sensitivity, and immunogold electron microscopy on isolated RLM and whole rat liver tissue.</description><subject>Animals</subject><subject>Catalase - analysis</subject><subject>Catalase - physiology</subject><subject>Energy Metabolism</subject><subject>Hydrogen Peroxide - pharmacology</subject><subject>Intracellular Membranes - metabolism</subject><subject>Kinetics</subject><subject>Mitochondria, Liver - enzymology</subject><subject>Mitochondria, Liver - metabolism</subject><subject>Oxidative Stress</subject><subject>Oxygen - metabolism</subject><subject>Permeability</subject><subject>Rats</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp1kEFPAjEQhRujEUSvHk0PXhen7S7bHg2KmkAwiom3ptudlSKwpF1R_70lS8LJmcMkk-9N5j1CLhn0GeTpzaKw_UkOLJOKAxyRLgMpEpGx92PSBeAsUTyTHXIWwgJipYqdkg7Ls3wQu0tGQ9OYpQlIZ-YTA302vqFuTV9MQ8dui55OXFPbeb0uvTN0-uNK08Q9fW08hkDvsMJ1wHNyUpllwIv97JG30f1s-JiMpw9Pw9txYlPGmqRi0sBAKWXBWiuZKKoCUTEoMsZVmg9ASpFXmSiQcxykKucSyqipDIgqQ9Ej_fau9XUIHiu98W5l_K9moHeB6BiIPgQSBVetYPNVrLA84PsEInDdAnP3Mf92HnXhol9caS65FkLzNIUdJlsMo7utQ6-Ddbi2WEaJbXRZu_9e-AMFg3mV</recordid><startdate>20070817</startdate><enddate>20070817</enddate><creator>Salvi, Mauro</creator><creator>Battaglia, Valentina</creator><creator>Brunati, Anna Maria</creator><creator>La Rocca, Nicoletta</creator><creator>Tibaldi, Elena</creator><creator>Pietrangeli, Paola</creator><creator>Marcocci, Lucia</creator><creator>Mondovi, Bruno</creator><creator>Rossi, Carlo A.</creator><creator>Toninello, Antonio</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20070817</creationdate><title>Catalase Takes Part in Rat Liver Mitochondria Oxidative Stress Defense</title><author>Salvi, Mauro ; Battaglia, Valentina ; Brunati, Anna Maria ; La Rocca, Nicoletta ; Tibaldi, Elena ; Pietrangeli, Paola ; Marcocci, Lucia ; Mondovi, Bruno ; Rossi, Carlo A. ; Toninello, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-f18a06999c0ccc813bfbee910b512947608837f53be22e6497280d8a0fa03f5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Animals</topic><topic>Catalase - analysis</topic><topic>Catalase - physiology</topic><topic>Energy Metabolism</topic><topic>Hydrogen Peroxide - pharmacology</topic><topic>Intracellular Membranes - metabolism</topic><topic>Kinetics</topic><topic>Mitochondria, Liver - enzymology</topic><topic>Mitochondria, Liver - metabolism</topic><topic>Oxidative Stress</topic><topic>Oxygen - metabolism</topic><topic>Permeability</topic><topic>Rats</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salvi, Mauro</creatorcontrib><creatorcontrib>Battaglia, Valentina</creatorcontrib><creatorcontrib>Brunati, Anna Maria</creatorcontrib><creatorcontrib>La Rocca, Nicoletta</creatorcontrib><creatorcontrib>Tibaldi, Elena</creatorcontrib><creatorcontrib>Pietrangeli, Paola</creatorcontrib><creatorcontrib>Marcocci, Lucia</creatorcontrib><creatorcontrib>Mondovi, Bruno</creatorcontrib><creatorcontrib>Rossi, Carlo A.</creatorcontrib><creatorcontrib>Toninello, Antonio</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salvi, Mauro</au><au>Battaglia, Valentina</au><au>Brunati, Anna Maria</au><au>La Rocca, Nicoletta</au><au>Tibaldi, Elena</au><au>Pietrangeli, Paola</au><au>Marcocci, Lucia</au><au>Mondovi, Bruno</au><au>Rossi, Carlo A.</au><au>Toninello, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Catalase Takes Part in Rat Liver Mitochondria Oxidative Stress Defense</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2007-08-17</date><risdate>2007</risdate><volume>282</volume><issue>33</issue><spage>24407</spage><epage>24415</epage><pages>24407-24415</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Highly purified rat liver mitochondria (RLM) when exposed to tert-butylhydroperoxide undergo matrix swelling, membrane potential collapse, and oxidation of glutathione and pyridine nucleotides, all events attributable to the induction of mitochondrial permeability transition. Instead, RLM, if treated with the same or higher amounts of H2O2 or tyramine, are insensitive or only partially sensitive, respectively, to mitochondrial permeability transition. In addition, the block of respiration by antimycin A added to RLM respiring in state 4 conditions, or the addition of H2O2, results in O2 generation, which is blocked by the catalase inhibitors aminotriazole or KCN. In this regard, H2O2 decomposition yields molecular oxygen in a 2:1 stoichiometry, consistent with a catalatic mechanism with a rate constant of 0.0346 s-1. The rate of H2O2 consumption is not influenced by respiratory substrates, succinate or glutamate-malate, nor by N-ethylmaleimide, suggesting that cytochrome c oxidase and the glutathione-glutathione peroxidase system are not significantly involved in this process. Instead, H2O2 consumption is considerably inhibited by KCN or aminotriazole, indicating activity by a hemoprotein. All these observations are compatible with the presence of endogenous heme-containing catalase with an activity of 825 ± 15 units, which contributes to mitochondrial protection against endogenous or exogenous H2O2. Mitochondrial catalase in liver most probably represents regulatory control of bioenergetic metabolism, but it may also be proposed for new therapeutic strategies against liver diseases. The constitutive presence of catalase inside mitochondria is demonstrated by several methodological approaches as follows: biochemical fractionating, proteinase K sensitivity, and immunogold electron microscopy on isolated RLM and whole rat liver tissue.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>17576767</pmid><doi>10.1074/jbc.M701589200</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2007-08, Vol.282 (33), p.24407-24415 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_crossref_primary_10_1074_jbc_M701589200 |
source | Elsevier ScienceDirect Journals; PubMed Central |
subjects | Animals Catalase - analysis Catalase - physiology Energy Metabolism Hydrogen Peroxide - pharmacology Intracellular Membranes - metabolism Kinetics Mitochondria, Liver - enzymology Mitochondria, Liver - metabolism Oxidative Stress Oxygen - metabolism Permeability Rats |
title | Catalase Takes Part in Rat Liver Mitochondria Oxidative Stress Defense |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A32%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Catalase%20Takes%20Part%20in%20Rat%20Liver%20Mitochondria%20Oxidative%20Stress%20Defense&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Salvi,%20Mauro&rft.date=2007-08-17&rft.volume=282&rft.issue=33&rft.spage=24407&rft.epage=24415&rft.pages=24407-24415&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M701589200&rft_dat=%3Cpubmed_cross%3E17576767%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c411t-f18a06999c0ccc813bfbee910b512947608837f53be22e6497280d8a0fa03f5e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/17576767&rfr_iscdi=true |