Loading…

Catalase Takes Part in Rat Liver Mitochondria Oxidative Stress Defense

Highly purified rat liver mitochondria (RLM) when exposed to tert-butylhydroperoxide undergo matrix swelling, membrane potential collapse, and oxidation of glutathione and pyridine nucleotides, all events attributable to the induction of mitochondrial permeability transition. Instead, RLM, if treate...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2007-08, Vol.282 (33), p.24407-24415
Main Authors: Salvi, Mauro, Battaglia, Valentina, Brunati, Anna Maria, La Rocca, Nicoletta, Tibaldi, Elena, Pietrangeli, Paola, Marcocci, Lucia, Mondovi, Bruno, Rossi, Carlo A., Toninello, Antonio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c411t-f18a06999c0ccc813bfbee910b512947608837f53be22e6497280d8a0fa03f5e3
cites cdi_FETCH-LOGICAL-c411t-f18a06999c0ccc813bfbee910b512947608837f53be22e6497280d8a0fa03f5e3
container_end_page 24415
container_issue 33
container_start_page 24407
container_title The Journal of biological chemistry
container_volume 282
creator Salvi, Mauro
Battaglia, Valentina
Brunati, Anna Maria
La Rocca, Nicoletta
Tibaldi, Elena
Pietrangeli, Paola
Marcocci, Lucia
Mondovi, Bruno
Rossi, Carlo A.
Toninello, Antonio
description Highly purified rat liver mitochondria (RLM) when exposed to tert-butylhydroperoxide undergo matrix swelling, membrane potential collapse, and oxidation of glutathione and pyridine nucleotides, all events attributable to the induction of mitochondrial permeability transition. Instead, RLM, if treated with the same or higher amounts of H2O2 or tyramine, are insensitive or only partially sensitive, respectively, to mitochondrial permeability transition. In addition, the block of respiration by antimycin A added to RLM respiring in state 4 conditions, or the addition of H2O2, results in O2 generation, which is blocked by the catalase inhibitors aminotriazole or KCN. In this regard, H2O2 decomposition yields molecular oxygen in a 2:1 stoichiometry, consistent with a catalatic mechanism with a rate constant of 0.0346 s-1. The rate of H2O2 consumption is not influenced by respiratory substrates, succinate or glutamate-malate, nor by N-ethylmaleimide, suggesting that cytochrome c oxidase and the glutathione-glutathione peroxidase system are not significantly involved in this process. Instead, H2O2 consumption is considerably inhibited by KCN or aminotriazole, indicating activity by a hemoprotein. All these observations are compatible with the presence of endogenous heme-containing catalase with an activity of 825 ± 15 units, which contributes to mitochondrial protection against endogenous or exogenous H2O2. Mitochondrial catalase in liver most probably represents regulatory control of bioenergetic metabolism, but it may also be proposed for new therapeutic strategies against liver diseases. The constitutive presence of catalase inside mitochondria is demonstrated by several methodological approaches as follows: biochemical fractionating, proteinase K sensitivity, and immunogold electron microscopy on isolated RLM and whole rat liver tissue.
doi_str_mv 10.1074/jbc.M701589200
format article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1074_jbc_M701589200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820544256</els_id><sourcerecordid>17576767</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-f18a06999c0ccc813bfbee910b512947608837f53be22e6497280d8a0fa03f5e3</originalsourceid><addsrcrecordid>eNp1kEFPAjEQhRujEUSvHk0PXhen7S7bHg2KmkAwiom3ptudlSKwpF1R_70lS8LJmcMkk-9N5j1CLhn0GeTpzaKw_UkOLJOKAxyRLgMpEpGx92PSBeAsUTyTHXIWwgJipYqdkg7Ls3wQu0tGQ9OYpQlIZ-YTA302vqFuTV9MQ8dui55OXFPbeb0uvTN0-uNK08Q9fW08hkDvsMJ1wHNyUpllwIv97JG30f1s-JiMpw9Pw9txYlPGmqRi0sBAKWXBWiuZKKoCUTEoMsZVmg9ASpFXmSiQcxykKucSyqipDIgqQ9Ej_fau9XUIHiu98W5l_K9moHeB6BiIPgQSBVetYPNVrLA84PsEInDdAnP3Mf92HnXhol9caS65FkLzNIUdJlsMo7utQ6-Ddbi2WEaJbXRZu_9e-AMFg3mV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Catalase Takes Part in Rat Liver Mitochondria Oxidative Stress Defense</title><source>Elsevier ScienceDirect Journals</source><source>PubMed Central</source><creator>Salvi, Mauro ; Battaglia, Valentina ; Brunati, Anna Maria ; La Rocca, Nicoletta ; Tibaldi, Elena ; Pietrangeli, Paola ; Marcocci, Lucia ; Mondovi, Bruno ; Rossi, Carlo A. ; Toninello, Antonio</creator><creatorcontrib>Salvi, Mauro ; Battaglia, Valentina ; Brunati, Anna Maria ; La Rocca, Nicoletta ; Tibaldi, Elena ; Pietrangeli, Paola ; Marcocci, Lucia ; Mondovi, Bruno ; Rossi, Carlo A. ; Toninello, Antonio</creatorcontrib><description>Highly purified rat liver mitochondria (RLM) when exposed to tert-butylhydroperoxide undergo matrix swelling, membrane potential collapse, and oxidation of glutathione and pyridine nucleotides, all events attributable to the induction of mitochondrial permeability transition. Instead, RLM, if treated with the same or higher amounts of H2O2 or tyramine, are insensitive or only partially sensitive, respectively, to mitochondrial permeability transition. In addition, the block of respiration by antimycin A added to RLM respiring in state 4 conditions, or the addition of H2O2, results in O2 generation, which is blocked by the catalase inhibitors aminotriazole or KCN. In this regard, H2O2 decomposition yields molecular oxygen in a 2:1 stoichiometry, consistent with a catalatic mechanism with a rate constant of 0.0346 s-1. The rate of H2O2 consumption is not influenced by respiratory substrates, succinate or glutamate-malate, nor by N-ethylmaleimide, suggesting that cytochrome c oxidase and the glutathione-glutathione peroxidase system are not significantly involved in this process. Instead, H2O2 consumption is considerably inhibited by KCN or aminotriazole, indicating activity by a hemoprotein. All these observations are compatible with the presence of endogenous heme-containing catalase with an activity of 825 ± 15 units, which contributes to mitochondrial protection against endogenous or exogenous H2O2. Mitochondrial catalase in liver most probably represents regulatory control of bioenergetic metabolism, but it may also be proposed for new therapeutic strategies against liver diseases. The constitutive presence of catalase inside mitochondria is demonstrated by several methodological approaches as follows: biochemical fractionating, proteinase K sensitivity, and immunogold electron microscopy on isolated RLM and whole rat liver tissue.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M701589200</identifier><identifier>PMID: 17576767</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Catalase - analysis ; Catalase - physiology ; Energy Metabolism ; Hydrogen Peroxide - pharmacology ; Intracellular Membranes - metabolism ; Kinetics ; Mitochondria, Liver - enzymology ; Mitochondria, Liver - metabolism ; Oxidative Stress ; Oxygen - metabolism ; Permeability ; Rats</subject><ispartof>The Journal of biological chemistry, 2007-08, Vol.282 (33), p.24407-24415</ispartof><rights>2007 © 2007 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-f18a06999c0ccc813bfbee910b512947608837f53be22e6497280d8a0fa03f5e3</citedby><cites>FETCH-LOGICAL-c411t-f18a06999c0ccc813bfbee910b512947608837f53be22e6497280d8a0fa03f5e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925820544256$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27901,27902,45756</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17576767$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Salvi, Mauro</creatorcontrib><creatorcontrib>Battaglia, Valentina</creatorcontrib><creatorcontrib>Brunati, Anna Maria</creatorcontrib><creatorcontrib>La Rocca, Nicoletta</creatorcontrib><creatorcontrib>Tibaldi, Elena</creatorcontrib><creatorcontrib>Pietrangeli, Paola</creatorcontrib><creatorcontrib>Marcocci, Lucia</creatorcontrib><creatorcontrib>Mondovi, Bruno</creatorcontrib><creatorcontrib>Rossi, Carlo A.</creatorcontrib><creatorcontrib>Toninello, Antonio</creatorcontrib><title>Catalase Takes Part in Rat Liver Mitochondria Oxidative Stress Defense</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Highly purified rat liver mitochondria (RLM) when exposed to tert-butylhydroperoxide undergo matrix swelling, membrane potential collapse, and oxidation of glutathione and pyridine nucleotides, all events attributable to the induction of mitochondrial permeability transition. Instead, RLM, if treated with the same or higher amounts of H2O2 or tyramine, are insensitive or only partially sensitive, respectively, to mitochondrial permeability transition. In addition, the block of respiration by antimycin A added to RLM respiring in state 4 conditions, or the addition of H2O2, results in O2 generation, which is blocked by the catalase inhibitors aminotriazole or KCN. In this regard, H2O2 decomposition yields molecular oxygen in a 2:1 stoichiometry, consistent with a catalatic mechanism with a rate constant of 0.0346 s-1. The rate of H2O2 consumption is not influenced by respiratory substrates, succinate or glutamate-malate, nor by N-ethylmaleimide, suggesting that cytochrome c oxidase and the glutathione-glutathione peroxidase system are not significantly involved in this process. Instead, H2O2 consumption is considerably inhibited by KCN or aminotriazole, indicating activity by a hemoprotein. All these observations are compatible with the presence of endogenous heme-containing catalase with an activity of 825 ± 15 units, which contributes to mitochondrial protection against endogenous or exogenous H2O2. Mitochondrial catalase in liver most probably represents regulatory control of bioenergetic metabolism, but it may also be proposed for new therapeutic strategies against liver diseases. The constitutive presence of catalase inside mitochondria is demonstrated by several methodological approaches as follows: biochemical fractionating, proteinase K sensitivity, and immunogold electron microscopy on isolated RLM and whole rat liver tissue.</description><subject>Animals</subject><subject>Catalase - analysis</subject><subject>Catalase - physiology</subject><subject>Energy Metabolism</subject><subject>Hydrogen Peroxide - pharmacology</subject><subject>Intracellular Membranes - metabolism</subject><subject>Kinetics</subject><subject>Mitochondria, Liver - enzymology</subject><subject>Mitochondria, Liver - metabolism</subject><subject>Oxidative Stress</subject><subject>Oxygen - metabolism</subject><subject>Permeability</subject><subject>Rats</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp1kEFPAjEQhRujEUSvHk0PXhen7S7bHg2KmkAwiom3ptudlSKwpF1R_70lS8LJmcMkk-9N5j1CLhn0GeTpzaKw_UkOLJOKAxyRLgMpEpGx92PSBeAsUTyTHXIWwgJipYqdkg7Ls3wQu0tGQ9OYpQlIZ-YTA302vqFuTV9MQ8dui55OXFPbeb0uvTN0-uNK08Q9fW08hkDvsMJ1wHNyUpllwIv97JG30f1s-JiMpw9Pw9txYlPGmqRi0sBAKWXBWiuZKKoCUTEoMsZVmg9ASpFXmSiQcxykKucSyqipDIgqQ9Ej_fau9XUIHiu98W5l_K9moHeB6BiIPgQSBVetYPNVrLA84PsEInDdAnP3Mf92HnXhol9caS65FkLzNIUdJlsMo7utQ6-Ddbi2WEaJbXRZu_9e-AMFg3mV</recordid><startdate>20070817</startdate><enddate>20070817</enddate><creator>Salvi, Mauro</creator><creator>Battaglia, Valentina</creator><creator>Brunati, Anna Maria</creator><creator>La Rocca, Nicoletta</creator><creator>Tibaldi, Elena</creator><creator>Pietrangeli, Paola</creator><creator>Marcocci, Lucia</creator><creator>Mondovi, Bruno</creator><creator>Rossi, Carlo A.</creator><creator>Toninello, Antonio</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20070817</creationdate><title>Catalase Takes Part in Rat Liver Mitochondria Oxidative Stress Defense</title><author>Salvi, Mauro ; Battaglia, Valentina ; Brunati, Anna Maria ; La Rocca, Nicoletta ; Tibaldi, Elena ; Pietrangeli, Paola ; Marcocci, Lucia ; Mondovi, Bruno ; Rossi, Carlo A. ; Toninello, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-f18a06999c0ccc813bfbee910b512947608837f53be22e6497280d8a0fa03f5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Animals</topic><topic>Catalase - analysis</topic><topic>Catalase - physiology</topic><topic>Energy Metabolism</topic><topic>Hydrogen Peroxide - pharmacology</topic><topic>Intracellular Membranes - metabolism</topic><topic>Kinetics</topic><topic>Mitochondria, Liver - enzymology</topic><topic>Mitochondria, Liver - metabolism</topic><topic>Oxidative Stress</topic><topic>Oxygen - metabolism</topic><topic>Permeability</topic><topic>Rats</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salvi, Mauro</creatorcontrib><creatorcontrib>Battaglia, Valentina</creatorcontrib><creatorcontrib>Brunati, Anna Maria</creatorcontrib><creatorcontrib>La Rocca, Nicoletta</creatorcontrib><creatorcontrib>Tibaldi, Elena</creatorcontrib><creatorcontrib>Pietrangeli, Paola</creatorcontrib><creatorcontrib>Marcocci, Lucia</creatorcontrib><creatorcontrib>Mondovi, Bruno</creatorcontrib><creatorcontrib>Rossi, Carlo A.</creatorcontrib><creatorcontrib>Toninello, Antonio</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salvi, Mauro</au><au>Battaglia, Valentina</au><au>Brunati, Anna Maria</au><au>La Rocca, Nicoletta</au><au>Tibaldi, Elena</au><au>Pietrangeli, Paola</au><au>Marcocci, Lucia</au><au>Mondovi, Bruno</au><au>Rossi, Carlo A.</au><au>Toninello, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Catalase Takes Part in Rat Liver Mitochondria Oxidative Stress Defense</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2007-08-17</date><risdate>2007</risdate><volume>282</volume><issue>33</issue><spage>24407</spage><epage>24415</epage><pages>24407-24415</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Highly purified rat liver mitochondria (RLM) when exposed to tert-butylhydroperoxide undergo matrix swelling, membrane potential collapse, and oxidation of glutathione and pyridine nucleotides, all events attributable to the induction of mitochondrial permeability transition. Instead, RLM, if treated with the same or higher amounts of H2O2 or tyramine, are insensitive or only partially sensitive, respectively, to mitochondrial permeability transition. In addition, the block of respiration by antimycin A added to RLM respiring in state 4 conditions, or the addition of H2O2, results in O2 generation, which is blocked by the catalase inhibitors aminotriazole or KCN. In this regard, H2O2 decomposition yields molecular oxygen in a 2:1 stoichiometry, consistent with a catalatic mechanism with a rate constant of 0.0346 s-1. The rate of H2O2 consumption is not influenced by respiratory substrates, succinate or glutamate-malate, nor by N-ethylmaleimide, suggesting that cytochrome c oxidase and the glutathione-glutathione peroxidase system are not significantly involved in this process. Instead, H2O2 consumption is considerably inhibited by KCN or aminotriazole, indicating activity by a hemoprotein. All these observations are compatible with the presence of endogenous heme-containing catalase with an activity of 825 ± 15 units, which contributes to mitochondrial protection against endogenous or exogenous H2O2. Mitochondrial catalase in liver most probably represents regulatory control of bioenergetic metabolism, but it may also be proposed for new therapeutic strategies against liver diseases. The constitutive presence of catalase inside mitochondria is demonstrated by several methodological approaches as follows: biochemical fractionating, proteinase K sensitivity, and immunogold electron microscopy on isolated RLM and whole rat liver tissue.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>17576767</pmid><doi>10.1074/jbc.M701589200</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2007-08, Vol.282 (33), p.24407-24415
issn 0021-9258
1083-351X
language eng
recordid cdi_crossref_primary_10_1074_jbc_M701589200
source Elsevier ScienceDirect Journals; PubMed Central
subjects Animals
Catalase - analysis
Catalase - physiology
Energy Metabolism
Hydrogen Peroxide - pharmacology
Intracellular Membranes - metabolism
Kinetics
Mitochondria, Liver - enzymology
Mitochondria, Liver - metabolism
Oxidative Stress
Oxygen - metabolism
Permeability
Rats
title Catalase Takes Part in Rat Liver Mitochondria Oxidative Stress Defense
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A32%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Catalase%20Takes%20Part%20in%20Rat%20Liver%20Mitochondria%20Oxidative%20Stress%20Defense&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Salvi,%20Mauro&rft.date=2007-08-17&rft.volume=282&rft.issue=33&rft.spage=24407&rft.epage=24415&rft.pages=24407-24415&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M701589200&rft_dat=%3Cpubmed_cross%3E17576767%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c411t-f18a06999c0ccc813bfbee910b512947608837f53be22e6497280d8a0fa03f5e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/17576767&rfr_iscdi=true