Loading…

Defining the Potassium Binding Region in an Apple Terpene Synthase

Terpene synthases are a family of enzymes largely responsible for synthesizing the vast array of terpenoid compounds known to exist in nature. Formation of terpenoids from their respective 10-, 15-, or 20-carbon atom prenyl diphosphate precursors is initiated by divalent (M2+) metal ion-assisted ele...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2009-03, Vol.284 (13), p.8661-8669
Main Authors: Green, Sol, Squire, Christopher J., Nieuwenhuizen, Niels J., Baker, Edward N., Laing, William
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Terpene synthases are a family of enzymes largely responsible for synthesizing the vast array of terpenoid compounds known to exist in nature. Formation of terpenoids from their respective 10-, 15-, or 20-carbon atom prenyl diphosphate precursors is initiated by divalent (M2+) metal ion-assisted electrophilic attack. In addition to M2+, monovalent cations (M+) have also been shown to be essential for the activity of certain terpene synthases most likely by facilitating substrate binding or catalysis. An apple α-farnesene synthase (MdAFS1), which has a dependence upon potassium (K+), was used to identify active site regions that may be important for M+ binding. Protein homology modeling revealed a surface-exposed loop (H-αl loop) in MdAFS1 that fulfilled the necessary requirements for a K+ binding region. Site-directed mutagenesis analysis of specific residues within this loop then revealed their crucial importance to this K+ response and strongly implicated specific residues in direct K+ binding. The role of the H-αl loop in terpene synthase K+ coordination was confirmed in a Conifer pinene synthase also using site-directed mutagenesis. These findings provide the first direct evidence for a specific M+ binding region in two functionally and phylogenetically divergent terpene synthases. They also provide a basis for understanding K+ activation in other terpene synthases and establish a new role for the H-αl loop region in terpene synthase catalysis.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M807140200