Loading…

Analysis of Intimal Proteoglycans in Atherosclerosis-prone and Atherosclerosis-resistant Human Arteries by Mass Spectrometry

The propensity to develop atherosclerosis varies markedly among different sites in the human vasculature. To determine a possible cause for such differences in atherosclerosis susceptibility, a proteomics-based approach was used to assess the extracellular proteoglycan core protein composition of in...

Full description

Saved in:
Bibliographic Details
Published in:Molecular & cellular proteomics 2005-09, Vol.4 (9), p.1350-1357
Main Authors: Talusan, Paul, Bedri, Shahinaz, Yang, Suping, Kattapuram, Taj, Silva, Nilsa, Roughley, Peter J, Stone, James R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The propensity to develop atherosclerosis varies markedly among different sites in the human vasculature. To determine a possible cause for such differences in atherosclerosis susceptibility, a proteomics-based approach was used to assess the extracellular proteoglycan core protein composition of intimal hyperplasia from both the atherosclerosis-prone internal carotid artery and the atherosclerosis-resistant internal thoracic artery. The intimal proteoglycan composition in these preatherosclerotic lesions was found to be more complex than previously appreciated with up to eight distinct core proteins present, including the large extracellular proteoglycans versican and aggrecan, the basement membrane proteoglycan perlecan, the class I small leucine-rich proteoglycans biglycan and decorin, and the class II small leucine-rich proteoglycans lumican, fibromodulin, and prolargin/PRELP (proline arginine-rich end leucine-rich repeat protein). Although most of these proteoglycans seem to be present in similar amounts at the two locations, there was a selective enhanced deposition of lumican in the intima of the atherosclerosis-prone internal carotid artery compared with the intima of the atherosclerosis-resistant internal thoracic artery. The enhanced deposition of lumican in the intima of an atherosclerosis prone artery has important implications for the pathogenesis of atherosclerosis.
ISSN:1535-9476
1535-9484
DOI:10.1074/mcp.M500088-MCP200