Loading…

Going Viral, Binge-Watching, and Attention Cannibalism

Binge-watching behavior is modeled for a single season of an original program from a streaming service to understand and make predictions about how individuals watch newly released content. Viewers make two choices in binge watching. First, the onset when individuals begin viewing the program is mod...

Full description

Saved in:
Bibliographic Details
Published in:The American statistician 2020-10, Vol.74 (4), p.380-391
Main Authors: Grimshaw, Scott D., Blades, Natalie J., Berrett, Candace
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c338t-6e2ef9b40c004c01768960761dadeb6f50469a77b1cd6671648aaf1845d268ca3
cites cdi_FETCH-LOGICAL-c338t-6e2ef9b40c004c01768960761dadeb6f50469a77b1cd6671648aaf1845d268ca3
container_end_page 391
container_issue 4
container_start_page 380
container_title The American statistician
container_volume 74
creator Grimshaw, Scott D.
Blades, Natalie J.
Berrett, Candace
description Binge-watching behavior is modeled for a single season of an original program from a streaming service to understand and make predictions about how individuals watch newly released content. Viewers make two choices in binge watching. First, the onset when individuals begin viewing the program is modeled using a change point between epidemic viewing with a nonconstant hazard rate and endemic viewing with a constant hazard rate. Second, the time it takes for individuals to complete the full season is modeled using an expanded negative binomial hurdle model to account for both binge racers (who watch all episodes in a single day) and other viewers. With the rapid increase in original content for streaming services, network executives are interested in the decision of simultaneously releasing multiple original programs or staggering premiere dates. The two model results are used to investigate competing risks to determine how the amount of time between premieres impacts attention cannibalism, when a viewer takes a long time watching their first choice program and consequently never watches the second program.
doi_str_mv 10.1080/00031305.2020.1774415
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_00031305_2020_1774415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2544356383</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-6e2ef9b40c004c01768960761dadeb6f50469a77b1cd6671648aaf1845d268ca3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKs_QRhw26nJ5DXdWYtWoeDGxzLcyWQ0ZZrUJEX6783QunV1z72ccw98CF0TPCW4xrcYY0oo5tMKV_kkJWOEn6AR4VSWlaTkFI0GTzmYztFFjOu8YimqERJLb91n8W4D9JPiPmtTfkDSX1lNCnBtMU_JuGS9KxbgnG2gt3Fzic466KO5Os4xent8eF08lauX5fNivio1pXUqhalMN2sY1hgzjYkU9UzkYtJCaxrRcczEDKRsiG6FkESwGqAjNeNtJWoNdIxuDn-3wX_vTExq7XfB5UpVccYoF7Sm2cUPLh18jMF0ahvsBsJeEawGROoPkRoQqSOinLs75KzrfNjAjw99qxLsex-6AE7bqOj_L34BYZ5qcA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544356383</pqid></control><display><type>article</type><title>Going Viral, Binge-Watching, and Attention Cannibalism</title><source>Taylor and Francis Science and Technology Collection</source><creator>Grimshaw, Scott D. ; Blades, Natalie J. ; Berrett, Candace</creator><creatorcontrib>Grimshaw, Scott D. ; Blades, Natalie J. ; Berrett, Candace</creatorcontrib><description>Binge-watching behavior is modeled for a single season of an original program from a streaming service to understand and make predictions about how individuals watch newly released content. Viewers make two choices in binge watching. First, the onset when individuals begin viewing the program is modeled using a change point between epidemic viewing with a nonconstant hazard rate and endemic viewing with a constant hazard rate. Second, the time it takes for individuals to complete the full season is modeled using an expanded negative binomial hurdle model to account for both binge racers (who watch all episodes in a single day) and other viewers. With the rapid increase in original content for streaming services, network executives are interested in the decision of simultaneously releasing multiple original programs or staggering premiere dates. The two model results are used to investigate competing risks to determine how the amount of time between premieres impacts attention cannibalism, when a viewer takes a long time watching their first choice program and consequently never watches the second program.</description><identifier>ISSN: 0003-1305</identifier><identifier>EISSN: 1537-2731</identifier><identifier>DOI: 10.1080/00031305.2020.1774415</identifier><language>eng</language><publisher>Alexandria: Taylor &amp; Francis</publisher><subject>Cannibalism ; Digital viewing ; Endemic ; Entertainment ; Epidemic ; Regression analysis ; Statistical methods ; Statistics ; Streaming media ; Viewership ; Viewing</subject><ispartof>The American statistician, 2020-10, Vol.74 (4), p.380-391</ispartof><rights>2020 American Statistical Association 2020</rights><rights>2020 American Statistical Association</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-6e2ef9b40c004c01768960761dadeb6f50469a77b1cd6671648aaf1845d268ca3</citedby><cites>FETCH-LOGICAL-c338t-6e2ef9b40c004c01768960761dadeb6f50469a77b1cd6671648aaf1845d268ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Grimshaw, Scott D.</creatorcontrib><creatorcontrib>Blades, Natalie J.</creatorcontrib><creatorcontrib>Berrett, Candace</creatorcontrib><title>Going Viral, Binge-Watching, and Attention Cannibalism</title><title>The American statistician</title><description>Binge-watching behavior is modeled for a single season of an original program from a streaming service to understand and make predictions about how individuals watch newly released content. Viewers make two choices in binge watching. First, the onset when individuals begin viewing the program is modeled using a change point between epidemic viewing with a nonconstant hazard rate and endemic viewing with a constant hazard rate. Second, the time it takes for individuals to complete the full season is modeled using an expanded negative binomial hurdle model to account for both binge racers (who watch all episodes in a single day) and other viewers. With the rapid increase in original content for streaming services, network executives are interested in the decision of simultaneously releasing multiple original programs or staggering premiere dates. The two model results are used to investigate competing risks to determine how the amount of time between premieres impacts attention cannibalism, when a viewer takes a long time watching their first choice program and consequently never watches the second program.</description><subject>Cannibalism</subject><subject>Digital viewing</subject><subject>Endemic</subject><subject>Entertainment</subject><subject>Epidemic</subject><subject>Regression analysis</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Streaming media</subject><subject>Viewership</subject><subject>Viewing</subject><issn>0003-1305</issn><issn>1537-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKs_QRhw26nJ5DXdWYtWoeDGxzLcyWQ0ZZrUJEX6783QunV1z72ccw98CF0TPCW4xrcYY0oo5tMKV_kkJWOEn6AR4VSWlaTkFI0GTzmYztFFjOu8YimqERJLb91n8W4D9JPiPmtTfkDSX1lNCnBtMU_JuGS9KxbgnG2gt3Fzic466KO5Os4xent8eF08lauX5fNivio1pXUqhalMN2sY1hgzjYkU9UzkYtJCaxrRcczEDKRsiG6FkESwGqAjNeNtJWoNdIxuDn-3wX_vTExq7XfB5UpVccYoF7Sm2cUPLh18jMF0ahvsBsJeEawGROoPkRoQqSOinLs75KzrfNjAjw99qxLsex-6AE7bqOj_L34BYZ5qcA</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Grimshaw, Scott D.</creator><creator>Blades, Natalie J.</creator><creator>Berrett, Candace</creator><general>Taylor &amp; Francis</general><general>American Statistical Association</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201001</creationdate><title>Going Viral, Binge-Watching, and Attention Cannibalism</title><author>Grimshaw, Scott D. ; Blades, Natalie J. ; Berrett, Candace</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-6e2ef9b40c004c01768960761dadeb6f50469a77b1cd6671648aaf1845d268ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cannibalism</topic><topic>Digital viewing</topic><topic>Endemic</topic><topic>Entertainment</topic><topic>Epidemic</topic><topic>Regression analysis</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Streaming media</topic><topic>Viewership</topic><topic>Viewing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grimshaw, Scott D.</creatorcontrib><creatorcontrib>Blades, Natalie J.</creatorcontrib><creatorcontrib>Berrett, Candace</creatorcontrib><collection>CrossRef</collection><jtitle>The American statistician</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grimshaw, Scott D.</au><au>Blades, Natalie J.</au><au>Berrett, Candace</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Going Viral, Binge-Watching, and Attention Cannibalism</atitle><jtitle>The American statistician</jtitle><date>2020-10-01</date><risdate>2020</risdate><volume>74</volume><issue>4</issue><spage>380</spage><epage>391</epage><pages>380-391</pages><issn>0003-1305</issn><eissn>1537-2731</eissn><abstract>Binge-watching behavior is modeled for a single season of an original program from a streaming service to understand and make predictions about how individuals watch newly released content. Viewers make two choices in binge watching. First, the onset when individuals begin viewing the program is modeled using a change point between epidemic viewing with a nonconstant hazard rate and endemic viewing with a constant hazard rate. Second, the time it takes for individuals to complete the full season is modeled using an expanded negative binomial hurdle model to account for both binge racers (who watch all episodes in a single day) and other viewers. With the rapid increase in original content for streaming services, network executives are interested in the decision of simultaneously releasing multiple original programs or staggering premiere dates. The two model results are used to investigate competing risks to determine how the amount of time between premieres impacts attention cannibalism, when a viewer takes a long time watching their first choice program and consequently never watches the second program.</abstract><cop>Alexandria</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/00031305.2020.1774415</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-1305
ispartof The American statistician, 2020-10, Vol.74 (4), p.380-391
issn 0003-1305
1537-2731
language eng
recordid cdi_crossref_primary_10_1080_00031305_2020_1774415
source Taylor and Francis Science and Technology Collection
subjects Cannibalism
Digital viewing
Endemic
Entertainment
Epidemic
Regression analysis
Statistical methods
Statistics
Streaming media
Viewership
Viewing
title Going Viral, Binge-Watching, and Attention Cannibalism
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A16%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Going%20Viral,%20Binge-Watching,%20and%20Attention%20Cannibalism&rft.jtitle=The%20American%20statistician&rft.au=Grimshaw,%20Scott%20D.&rft.date=2020-10-01&rft.volume=74&rft.issue=4&rft.spage=380&rft.epage=391&rft.pages=380-391&rft.issn=0003-1305&rft.eissn=1537-2731&rft_id=info:doi/10.1080/00031305.2020.1774415&rft_dat=%3Cproquest_cross%3E2544356383%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-6e2ef9b40c004c01768960761dadeb6f50469a77b1cd6671648aaf1845d268ca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2544356383&rft_id=info:pmid/&rfr_iscdi=true