Loading…
Retrieving the time-dependent thermal conductivity of an orthotropic rectangular conductor
The aim of this paper is to determine the thermal properties of an orthotropic planar structure characterized by the thermal conductivity tensor in the coordinate system of the main directions (Oxy) being diagonal. In particular, we consider retrieving the time-dependent thermal conductivity compone...
Saved in:
Published in: | Applicable analysis 2017-11, Vol.96 (15), p.2604-2618 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The aim of this paper is to determine the thermal properties of an orthotropic planar structure characterized by the thermal conductivity tensor in the coordinate system of the main directions (Oxy) being diagonal. In particular, we consider retrieving the time-dependent thermal conductivity components of an orthotropic rectangular conductor from nonlocal overspecified heat flux conditions. Since only boundary measurements are considered, this inverse formulation belongs to the desirable approach of non-destructive testing of materials. The unique solvability of this inverse coefficient problem is proved based on the Schauder fixed point theorem and the theory of Volterra integral equations of the second kind. Furthermore, the numerical reconstruction based on a nonlinear least-squares minimization is performed using the MATLAB optimization toolbox routine lsqnonlin. Numerical results are presented and discussed in order to illustrate the performance of the inversion for orthotropic parameter identification. |
---|---|
ISSN: | 0003-6811 1563-504X |
DOI: | 10.1080/00036811.2016.1232401 |