Loading…
A limited information estimator for the multivariate ordinal probit model
A limited information estimator for the multivariate ordinal probit model is developed. The main advantage of the estimator is that even for high dimensional models, the estimation procedure requires the evaluation of bivariate normal integrals only. The proposed estimator also avoids the potential...
Saved in:
Published in: | Applied economics 2000-11, Vol.32 (14), p.1841-1851 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c567t-96d2222aba897ff575bae1ad17525c0b62154b4f4313f73d1f625031de010bd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c567t-96d2222aba897ff575bae1ad17525c0b62154b4f4313f73d1f625031de010bd3 |
container_end_page | 1851 |
container_issue | 14 |
container_start_page | 1841 |
container_title | Applied economics |
container_volume | 32 |
creator | Fu, Tsu-Tan Li, Lung-An Lin, Yih-Ming Kan, Kamhon |
description | A limited information estimator for the multivariate ordinal probit model is developed. The main advantage of the estimator is that even for high dimensional models, the estimation procedure requires the evaluation of bivariate normal integrals only. The proposed estimator also avoids the potential problem of encountering local maxima in the estimation process, which is looming using maximum likelihood. The performance of the limited information estimator is shown by Monte Carlo experiments to be excellent and it is comparable to that of the maximum likelihood estimator. Finally, an application of the limited information multivariate ordinal probit to model the consumption level of cigarette, alcohol and betel nut is presented. |
doi_str_mv | 10.1080/000368400425062 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_000368400425062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>39088696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c567t-96d2222aba897ff575bae1ad17525c0b62154b4f4313f73d1f625031de010bd3</originalsourceid><addsrcrecordid>eNqFUE1v1DAQtRBILIUzV4sDt1CPv5JwqyoKlYq49G45sa26cuJgewv775nVVhxWQliaD3vee54ZQt4D-wRsYJeMMaEHyZjkimn-guxAat1JPoiXZHesdljWr8mbWh_xClz0O3J7RVNcYvOOxjXkstgW80p9bRHTXCi-0fbg6bJPLT7ZEm3zNBcXV5voVvIUG12y8-kteRVsqv7dc7wg9zdf7q-_dXc_vt5eX911s9J960btOB472WHsQ1C9mqwH66BXXM1s0hyUnGSQAkTohYOgcR4BzjNgkxMX5ONJFv_-ucc-zRLr7FOyq8_7asTIhkGPGoEfzoCPeV-w62o4cD1yyTiCLk-gueRaiw9mKzh4ORhg5rhWc7ZWZHw_MYrf_PwX3myw25bw5ckIKzi6AxpHOoaIBhLddkwGCQYGBeahLaj3-aT3vP5fuSSHcoeUSyh2nSPO9O9m1H_JZxzTfjfxB50Mp08</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>212692402</pqid></control><display><type>article</type><title>A limited information estimator for the multivariate ordinal probit model</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>EBSCOhost Econlit with Full Text</source><source>Access via Business Source (EBSCOhost)</source><source>Taylor and Francis Social Sciences and Humanities Collection</source><creator>Fu, Tsu-Tan ; Li, Lung-An ; Lin, Yih-Ming ; Kan, Kamhon</creator><creatorcontrib>Fu, Tsu-Tan ; Li, Lung-An ; Lin, Yih-Ming ; Kan, Kamhon</creatorcontrib><description>A limited information estimator for the multivariate ordinal probit model is developed. The main advantage of the estimator is that even for high dimensional models, the estimation procedure requires the evaluation of bivariate normal integrals only. The proposed estimator also avoids the potential problem of encountering local maxima in the estimation process, which is looming using maximum likelihood. The performance of the limited information estimator is shown by Monte Carlo experiments to be excellent and it is comparable to that of the maximum likelihood estimator. Finally, an application of the limited information multivariate ordinal probit to model the consumption level of cigarette, alcohol and betel nut is presented.</description><identifier>ISSN: 0003-6846</identifier><identifier>EISSN: 1466-4283</identifier><identifier>DOI: 10.1080/000368400425062</identifier><identifier>CODEN: APPEBP</identifier><language>eng</language><publisher>London: Taylor & Francis Group</publisher><subject>Applied economics ; Consumption ; Economic behaviour ; Economic models ; Estimating techniques ; Estimation ; Modelling ; Multivariate analysis ; Studies</subject><ispartof>Applied economics, 2000-11, Vol.32 (14), p.1841-1851</ispartof><rights>Copyright Taylor & Francis Group, LLC 2000</rights><rights>Copyright Routledge Nov 15, 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c567t-96d2222aba897ff575bae1ad17525c0b62154b4f4313f73d1f625031de010bd3</citedby><cites>FETCH-LOGICAL-c567t-96d2222aba897ff575bae1ad17525c0b62154b4f4313f73d1f625031de010bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,33223,33224</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/tafapplec/v_3a32_3ay_3a2000_3ai_3a14_3ap_3a1841-1851.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Fu, Tsu-Tan</creatorcontrib><creatorcontrib>Li, Lung-An</creatorcontrib><creatorcontrib>Lin, Yih-Ming</creatorcontrib><creatorcontrib>Kan, Kamhon</creatorcontrib><title>A limited information estimator for the multivariate ordinal probit model</title><title>Applied economics</title><description>A limited information estimator for the multivariate ordinal probit model is developed. The main advantage of the estimator is that even for high dimensional models, the estimation procedure requires the evaluation of bivariate normal integrals only. The proposed estimator also avoids the potential problem of encountering local maxima in the estimation process, which is looming using maximum likelihood. The performance of the limited information estimator is shown by Monte Carlo experiments to be excellent and it is comparable to that of the maximum likelihood estimator. Finally, an application of the limited information multivariate ordinal probit to model the consumption level of cigarette, alcohol and betel nut is presented.</description><subject>Applied economics</subject><subject>Consumption</subject><subject>Economic behaviour</subject><subject>Economic models</subject><subject>Estimating techniques</subject><subject>Estimation</subject><subject>Modelling</subject><subject>Multivariate analysis</subject><subject>Studies</subject><issn>0003-6846</issn><issn>1466-4283</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNqFUE1v1DAQtRBILIUzV4sDt1CPv5JwqyoKlYq49G45sa26cuJgewv775nVVhxWQliaD3vee54ZQt4D-wRsYJeMMaEHyZjkimn-guxAat1JPoiXZHesdljWr8mbWh_xClz0O3J7RVNcYvOOxjXkstgW80p9bRHTXCi-0fbg6bJPLT7ZEm3zNBcXV5voVvIUG12y8-kteRVsqv7dc7wg9zdf7q-_dXc_vt5eX911s9J960btOB472WHsQ1C9mqwH66BXXM1s0hyUnGSQAkTohYOgcR4BzjNgkxMX5ONJFv_-ucc-zRLr7FOyq8_7asTIhkGPGoEfzoCPeV-w62o4cD1yyTiCLk-gueRaiw9mKzh4ORhg5rhWc7ZWZHw_MYrf_PwX3myw25bw5ckIKzi6AxpHOoaIBhLddkwGCQYGBeahLaj3-aT3vP5fuSSHcoeUSyh2nSPO9O9m1H_JZxzTfjfxB50Mp08</recordid><startdate>20001101</startdate><enddate>20001101</enddate><creator>Fu, Tsu-Tan</creator><creator>Li, Lung-An</creator><creator>Lin, Yih-Ming</creator><creator>Kan, Kamhon</creator><general>Taylor & Francis Group</general><general>Taylor and Francis Journals</general><general>Taylor & Francis Ltd</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20001101</creationdate><title>A limited information estimator for the multivariate ordinal probit model</title><author>Fu, Tsu-Tan ; Li, Lung-An ; Lin, Yih-Ming ; Kan, Kamhon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c567t-96d2222aba897ff575bae1ad17525c0b62154b4f4313f73d1f625031de010bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Applied economics</topic><topic>Consumption</topic><topic>Economic behaviour</topic><topic>Economic models</topic><topic>Estimating techniques</topic><topic>Estimation</topic><topic>Modelling</topic><topic>Multivariate analysis</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Tsu-Tan</creatorcontrib><creatorcontrib>Li, Lung-An</creatorcontrib><creatorcontrib>Lin, Yih-Ming</creatorcontrib><creatorcontrib>Kan, Kamhon</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Applied economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Tsu-Tan</au><au>Li, Lung-An</au><au>Lin, Yih-Ming</au><au>Kan, Kamhon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A limited information estimator for the multivariate ordinal probit model</atitle><jtitle>Applied economics</jtitle><date>2000-11-01</date><risdate>2000</risdate><volume>32</volume><issue>14</issue><spage>1841</spage><epage>1851</epage><pages>1841-1851</pages><issn>0003-6846</issn><eissn>1466-4283</eissn><coden>APPEBP</coden><abstract>A limited information estimator for the multivariate ordinal probit model is developed. The main advantage of the estimator is that even for high dimensional models, the estimation procedure requires the evaluation of bivariate normal integrals only. The proposed estimator also avoids the potential problem of encountering local maxima in the estimation process, which is looming using maximum likelihood. The performance of the limited information estimator is shown by Monte Carlo experiments to be excellent and it is comparable to that of the maximum likelihood estimator. Finally, an application of the limited information multivariate ordinal probit to model the consumption level of cigarette, alcohol and betel nut is presented.</abstract><cop>London</cop><pub>Taylor & Francis Group</pub><doi>10.1080/000368400425062</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6846 |
ispartof | Applied economics, 2000-11, Vol.32 (14), p.1841-1851 |
issn | 0003-6846 1466-4283 |
language | eng |
recordid | cdi_crossref_primary_10_1080_000368400425062 |
source | International Bibliography of the Social Sciences (IBSS); EBSCOhost Econlit with Full Text; Access via Business Source (EBSCOhost); Taylor and Francis Social Sciences and Humanities Collection |
subjects | Applied economics Consumption Economic behaviour Economic models Estimating techniques Estimation Modelling Multivariate analysis Studies |
title | A limited information estimator for the multivariate ordinal probit model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A30%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20limited%20information%20estimator%20for%20the%20multivariate%20ordinal%20probit%20model&rft.jtitle=Applied%20economics&rft.au=Fu,%20Tsu-Tan&rft.date=2000-11-01&rft.volume=32&rft.issue=14&rft.spage=1841&rft.epage=1851&rft.pages=1841-1851&rft.issn=0003-6846&rft.eissn=1466-4283&rft.coden=APPEBP&rft_id=info:doi/10.1080/000368400425062&rft_dat=%3Cproquest_cross%3E39088696%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c567t-96d2222aba897ff575bae1ad17525c0b62154b4f4313f73d1f625031de010bd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=212692402&rft_id=info:pmid/&rfr_iscdi=true |