Loading…
Analytic formula for option margin with liquidity costs under dynamic delta hedging
This study derives the expected liquidity cost when performing the delta hedging process of a European option. This cost is represented by an integration formula that includes European option prices and a certain function depending on the delta process. We first define a unit liquidity cost and then...
Saved in:
Published in: | Applied economics 2021-06, Vol.53 (29), p.3391-3407 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c376t-c38fe1c935b0d92c8d35fee2115b34a69dff5bc5bae265d45d6e94073a5450fe3 |
container_end_page | 3407 |
container_issue | 29 |
container_start_page | 3391 |
container_title | Applied economics |
container_volume | 53 |
creator | Lee, Kyungsub Seo, Byoung Ki |
description | This study derives the expected liquidity cost when performing the delta hedging process of a European option. This cost is represented by an integration formula that includes European option prices and a certain function depending on the delta process. We first define a unit liquidity cost and then show that the liquidity cost is a multiplication of the unit liquidity cost, stock price, supply curve parameter, and the square of the number of options. Using this formula, the expected liquidity cost before hedging can be calculated much faster than when using a Monte Carlo simulation. Numerically computed distributions of liquidity costs in special cases are also provided. |
doi_str_mv | 10.1080/00036846.2021.1881430 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_00036846_2021_1881430</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2536144326</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-c38fe1c935b0d92c8d35fee2115b34a69dff5bc5bae265d45d6e94073a5450fe3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWC-PIARcT829052leIOCC3UdMrm0KdNJm2Qo8_ZmaN26OT8Hvv_A-QB4wGiKUY2eEEJU1ExMCSJ4iusaM4ouwAQzISpGanoJJiNTjdA1uElpW1ZM6GwCvhadaofsNXQh7vpWjQnDPvvQwZ2Ka9_Bo88b2PpD743PA9Qh5QT7ztgIzdCpXSkb22YFN9YUfn0Hrpxqk70_5y34eX35Xr5Xq8-3j-ViVWk6E7nM2lms55Q3yMyJrg3lzlqCMW8oU2JunOON5o2yRHDDuBF2ztCMKs44cpbegsfT3X0Mh96mLLehj-WfJAmnAjNGiSgUP1E6hpSidXIffflskBjJ0Z_88ydHf_Lsr_SeTz3fjWrUMcTWyKyGNkQXVad9kvT_E7-LhHfF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2536144326</pqid></control><display><type>article</type><title>Analytic formula for option margin with liquidity costs under dynamic delta hedging</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Business Source Ultimate</source><source>EBSCO_EconLit with Full Text(美国经济学会全文数据库)</source><source>Taylor and Francis Social Sciences and Humanities Collection</source><creator>Lee, Kyungsub ; Seo, Byoung Ki</creator><creatorcontrib>Lee, Kyungsub ; Seo, Byoung Ki</creatorcontrib><description>This study derives the expected liquidity cost when performing the delta hedging process of a European option. This cost is represented by an integration formula that includes European option prices and a certain function depending on the delta process. We first define a unit liquidity cost and then show that the liquidity cost is a multiplication of the unit liquidity cost, stock price, supply curve parameter, and the square of the number of options. Using this formula, the expected liquidity cost before hedging can be calculated much faster than when using a Monte Carlo simulation. Numerically computed distributions of liquidity costs in special cases are also provided.</description><identifier>ISSN: 0003-6846</identifier><identifier>EISSN: 1466-4283</identifier><identifier>DOI: 10.1080/00036846.2021.1881430</identifier><language>eng</language><publisher>London: Routledge</publisher><subject>delta hedging ; Economic analysis ; Economic theory ; European option ; limit order ; Liquidity ; Liquidity cost ; Monte Carlo simulation ; Multiplication ; Prices ; quadratic variation ; Securities prices ; Simulation ; Stock prices</subject><ispartof>Applied economics, 2021-06, Vol.53 (29), p.3391-3407</ispartof><rights>2021 Informa UK Limited, trading as Taylor & Francis Group 2021</rights><rights>2021 Informa UK Limited, trading as Taylor & Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c376t-c38fe1c935b0d92c8d35fee2115b34a69dff5bc5bae265d45d6e94073a5450fe3</cites><orcidid>0000-0002-0114-9347</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924,33222</link.rule.ids></links><search><creatorcontrib>Lee, Kyungsub</creatorcontrib><creatorcontrib>Seo, Byoung Ki</creatorcontrib><title>Analytic formula for option margin with liquidity costs under dynamic delta hedging</title><title>Applied economics</title><description>This study derives the expected liquidity cost when performing the delta hedging process of a European option. This cost is represented by an integration formula that includes European option prices and a certain function depending on the delta process. We first define a unit liquidity cost and then show that the liquidity cost is a multiplication of the unit liquidity cost, stock price, supply curve parameter, and the square of the number of options. Using this formula, the expected liquidity cost before hedging can be calculated much faster than when using a Monte Carlo simulation. Numerically computed distributions of liquidity costs in special cases are also provided.</description><subject>delta hedging</subject><subject>Economic analysis</subject><subject>Economic theory</subject><subject>European option</subject><subject>limit order</subject><subject>Liquidity</subject><subject>Liquidity cost</subject><subject>Monte Carlo simulation</subject><subject>Multiplication</subject><subject>Prices</subject><subject>quadratic variation</subject><subject>Securities prices</subject><subject>Simulation</subject><subject>Stock prices</subject><issn>0003-6846</issn><issn>1466-4283</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNp9kMtKAzEUhoMoWC-PIARcT829052leIOCC3UdMrm0KdNJm2Qo8_ZmaN26OT8Hvv_A-QB4wGiKUY2eEEJU1ExMCSJ4iusaM4ouwAQzISpGanoJJiNTjdA1uElpW1ZM6GwCvhadaofsNXQh7vpWjQnDPvvQwZ2Ka9_Bo88b2PpD743PA9Qh5QT7ztgIzdCpXSkb22YFN9YUfn0Hrpxqk70_5y34eX35Xr5Xq8-3j-ViVWk6E7nM2lms55Q3yMyJrg3lzlqCMW8oU2JunOON5o2yRHDDuBF2ztCMKs44cpbegsfT3X0Mh96mLLehj-WfJAmnAjNGiSgUP1E6hpSidXIffflskBjJ0Z_88ydHf_Lsr_SeTz3fjWrUMcTWyKyGNkQXVad9kvT_E7-LhHfF</recordid><startdate>20210621</startdate><enddate>20210621</enddate><creator>Lee, Kyungsub</creator><creator>Seo, Byoung Ki</creator><general>Routledge</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><orcidid>https://orcid.org/0000-0002-0114-9347</orcidid></search><sort><creationdate>20210621</creationdate><title>Analytic formula for option margin with liquidity costs under dynamic delta hedging</title><author>Lee, Kyungsub ; Seo, Byoung Ki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-c38fe1c935b0d92c8d35fee2115b34a69dff5bc5bae265d45d6e94073a5450fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>delta hedging</topic><topic>Economic analysis</topic><topic>Economic theory</topic><topic>European option</topic><topic>limit order</topic><topic>Liquidity</topic><topic>Liquidity cost</topic><topic>Monte Carlo simulation</topic><topic>Multiplication</topic><topic>Prices</topic><topic>quadratic variation</topic><topic>Securities prices</topic><topic>Simulation</topic><topic>Stock prices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Kyungsub</creatorcontrib><creatorcontrib>Seo, Byoung Ki</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Applied economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Kyungsub</au><au>Seo, Byoung Ki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytic formula for option margin with liquidity costs under dynamic delta hedging</atitle><jtitle>Applied economics</jtitle><date>2021-06-21</date><risdate>2021</risdate><volume>53</volume><issue>29</issue><spage>3391</spage><epage>3407</epage><pages>3391-3407</pages><issn>0003-6846</issn><eissn>1466-4283</eissn><abstract>This study derives the expected liquidity cost when performing the delta hedging process of a European option. This cost is represented by an integration formula that includes European option prices and a certain function depending on the delta process. We first define a unit liquidity cost and then show that the liquidity cost is a multiplication of the unit liquidity cost, stock price, supply curve parameter, and the square of the number of options. Using this formula, the expected liquidity cost before hedging can be calculated much faster than when using a Monte Carlo simulation. Numerically computed distributions of liquidity costs in special cases are also provided.</abstract><cop>London</cop><pub>Routledge</pub><doi>10.1080/00036846.2021.1881430</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-0114-9347</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6846 |
ispartof | Applied economics, 2021-06, Vol.53 (29), p.3391-3407 |
issn | 0003-6846 1466-4283 |
language | eng |
recordid | cdi_crossref_primary_10_1080_00036846_2021_1881430 |
source | International Bibliography of the Social Sciences (IBSS); Business Source Ultimate; EBSCO_EconLit with Full Text(美国经济学会全文数据库); Taylor and Francis Social Sciences and Humanities Collection |
subjects | delta hedging Economic analysis Economic theory European option limit order Liquidity Liquidity cost Monte Carlo simulation Multiplication Prices quadratic variation Securities prices Simulation Stock prices |
title | Analytic formula for option margin with liquidity costs under dynamic delta hedging |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A42%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytic%20formula%20for%20option%20margin%20with%20liquidity%20costs%20under%20dynamic%20delta%20hedging&rft.jtitle=Applied%20economics&rft.au=Lee,%20Kyungsub&rft.date=2021-06-21&rft.volume=53&rft.issue=29&rft.spage=3391&rft.epage=3407&rft.pages=3391-3407&rft.issn=0003-6846&rft.eissn=1466-4283&rft_id=info:doi/10.1080/00036846.2021.1881430&rft_dat=%3Cproquest_cross%3E2536144326%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c376t-c38fe1c935b0d92c8d35fee2115b34a69dff5bc5bae265d45d6e94073a5450fe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2536144326&rft_id=info:pmid/&rfr_iscdi=true |