Loading…

Analytic formula for option margin with liquidity costs under dynamic delta hedging

This study derives the expected liquidity cost when performing the delta hedging process of a European option. This cost is represented by an integration formula that includes European option prices and a certain function depending on the delta process. We first define a unit liquidity cost and then...

Full description

Saved in:
Bibliographic Details
Published in:Applied economics 2021-06, Vol.53 (29), p.3391-3407
Main Authors: Lee, Kyungsub, Seo, Byoung Ki
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c376t-c38fe1c935b0d92c8d35fee2115b34a69dff5bc5bae265d45d6e94073a5450fe3
container_end_page 3407
container_issue 29
container_start_page 3391
container_title Applied economics
container_volume 53
creator Lee, Kyungsub
Seo, Byoung Ki
description This study derives the expected liquidity cost when performing the delta hedging process of a European option. This cost is represented by an integration formula that includes European option prices and a certain function depending on the delta process. We first define a unit liquidity cost and then show that the liquidity cost is a multiplication of the unit liquidity cost, stock price, supply curve parameter, and the square of the number of options. Using this formula, the expected liquidity cost before hedging can be calculated much faster than when using a Monte Carlo simulation. Numerically computed distributions of liquidity costs in special cases are also provided.
doi_str_mv 10.1080/00036846.2021.1881430
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_00036846_2021_1881430</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2536144326</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-c38fe1c935b0d92c8d35fee2115b34a69dff5bc5bae265d45d6e94073a5450fe3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWC-PIARcT829052leIOCC3UdMrm0KdNJm2Qo8_ZmaN26OT8Hvv_A-QB4wGiKUY2eEEJU1ExMCSJ4iusaM4ouwAQzISpGanoJJiNTjdA1uElpW1ZM6GwCvhadaofsNXQh7vpWjQnDPvvQwZ2Ka9_Bo88b2PpD743PA9Qh5QT7ztgIzdCpXSkb22YFN9YUfn0Hrpxqk70_5y34eX35Xr5Xq8-3j-ViVWk6E7nM2lms55Q3yMyJrg3lzlqCMW8oU2JunOON5o2yRHDDuBF2ztCMKs44cpbegsfT3X0Mh96mLLehj-WfJAmnAjNGiSgUP1E6hpSidXIffflskBjJ0Z_88ydHf_Lsr_SeTz3fjWrUMcTWyKyGNkQXVad9kvT_E7-LhHfF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2536144326</pqid></control><display><type>article</type><title>Analytic formula for option margin with liquidity costs under dynamic delta hedging</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Business Source Ultimate</source><source>EBSCO_EconLit with Full Text(美国经济学会全文数据库)</source><source>Taylor and Francis Social Sciences and Humanities Collection</source><creator>Lee, Kyungsub ; Seo, Byoung Ki</creator><creatorcontrib>Lee, Kyungsub ; Seo, Byoung Ki</creatorcontrib><description>This study derives the expected liquidity cost when performing the delta hedging process of a European option. This cost is represented by an integration formula that includes European option prices and a certain function depending on the delta process. We first define a unit liquidity cost and then show that the liquidity cost is a multiplication of the unit liquidity cost, stock price, supply curve parameter, and the square of the number of options. Using this formula, the expected liquidity cost before hedging can be calculated much faster than when using a Monte Carlo simulation. Numerically computed distributions of liquidity costs in special cases are also provided.</description><identifier>ISSN: 0003-6846</identifier><identifier>EISSN: 1466-4283</identifier><identifier>DOI: 10.1080/00036846.2021.1881430</identifier><language>eng</language><publisher>London: Routledge</publisher><subject>delta hedging ; Economic analysis ; Economic theory ; European option ; limit order ; Liquidity ; Liquidity cost ; Monte Carlo simulation ; Multiplication ; Prices ; quadratic variation ; Securities prices ; Simulation ; Stock prices</subject><ispartof>Applied economics, 2021-06, Vol.53 (29), p.3391-3407</ispartof><rights>2021 Informa UK Limited, trading as Taylor &amp; Francis Group 2021</rights><rights>2021 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c376t-c38fe1c935b0d92c8d35fee2115b34a69dff5bc5bae265d45d6e94073a5450fe3</cites><orcidid>0000-0002-0114-9347</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924,33222</link.rule.ids></links><search><creatorcontrib>Lee, Kyungsub</creatorcontrib><creatorcontrib>Seo, Byoung Ki</creatorcontrib><title>Analytic formula for option margin with liquidity costs under dynamic delta hedging</title><title>Applied economics</title><description>This study derives the expected liquidity cost when performing the delta hedging process of a European option. This cost is represented by an integration formula that includes European option prices and a certain function depending on the delta process. We first define a unit liquidity cost and then show that the liquidity cost is a multiplication of the unit liquidity cost, stock price, supply curve parameter, and the square of the number of options. Using this formula, the expected liquidity cost before hedging can be calculated much faster than when using a Monte Carlo simulation. Numerically computed distributions of liquidity costs in special cases are also provided.</description><subject>delta hedging</subject><subject>Economic analysis</subject><subject>Economic theory</subject><subject>European option</subject><subject>limit order</subject><subject>Liquidity</subject><subject>Liquidity cost</subject><subject>Monte Carlo simulation</subject><subject>Multiplication</subject><subject>Prices</subject><subject>quadratic variation</subject><subject>Securities prices</subject><subject>Simulation</subject><subject>Stock prices</subject><issn>0003-6846</issn><issn>1466-4283</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNp9kMtKAzEUhoMoWC-PIARcT829052leIOCC3UdMrm0KdNJm2Qo8_ZmaN26OT8Hvv_A-QB4wGiKUY2eEEJU1ExMCSJ4iusaM4ouwAQzISpGanoJJiNTjdA1uElpW1ZM6GwCvhadaofsNXQh7vpWjQnDPvvQwZ2Ka9_Bo88b2PpD743PA9Qh5QT7ztgIzdCpXSkb22YFN9YUfn0Hrpxqk70_5y34eX35Xr5Xq8-3j-ViVWk6E7nM2lms55Q3yMyJrg3lzlqCMW8oU2JunOON5o2yRHDDuBF2ztCMKs44cpbegsfT3X0Mh96mLLehj-WfJAmnAjNGiSgUP1E6hpSidXIffflskBjJ0Z_88ydHf_Lsr_SeTz3fjWrUMcTWyKyGNkQXVad9kvT_E7-LhHfF</recordid><startdate>20210621</startdate><enddate>20210621</enddate><creator>Lee, Kyungsub</creator><creator>Seo, Byoung Ki</creator><general>Routledge</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><orcidid>https://orcid.org/0000-0002-0114-9347</orcidid></search><sort><creationdate>20210621</creationdate><title>Analytic formula for option margin with liquidity costs under dynamic delta hedging</title><author>Lee, Kyungsub ; Seo, Byoung Ki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-c38fe1c935b0d92c8d35fee2115b34a69dff5bc5bae265d45d6e94073a5450fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>delta hedging</topic><topic>Economic analysis</topic><topic>Economic theory</topic><topic>European option</topic><topic>limit order</topic><topic>Liquidity</topic><topic>Liquidity cost</topic><topic>Monte Carlo simulation</topic><topic>Multiplication</topic><topic>Prices</topic><topic>quadratic variation</topic><topic>Securities prices</topic><topic>Simulation</topic><topic>Stock prices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Kyungsub</creatorcontrib><creatorcontrib>Seo, Byoung Ki</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Applied economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Kyungsub</au><au>Seo, Byoung Ki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytic formula for option margin with liquidity costs under dynamic delta hedging</atitle><jtitle>Applied economics</jtitle><date>2021-06-21</date><risdate>2021</risdate><volume>53</volume><issue>29</issue><spage>3391</spage><epage>3407</epage><pages>3391-3407</pages><issn>0003-6846</issn><eissn>1466-4283</eissn><abstract>This study derives the expected liquidity cost when performing the delta hedging process of a European option. This cost is represented by an integration formula that includes European option prices and a certain function depending on the delta process. We first define a unit liquidity cost and then show that the liquidity cost is a multiplication of the unit liquidity cost, stock price, supply curve parameter, and the square of the number of options. Using this formula, the expected liquidity cost before hedging can be calculated much faster than when using a Monte Carlo simulation. Numerically computed distributions of liquidity costs in special cases are also provided.</abstract><cop>London</cop><pub>Routledge</pub><doi>10.1080/00036846.2021.1881430</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-0114-9347</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6846
ispartof Applied economics, 2021-06, Vol.53 (29), p.3391-3407
issn 0003-6846
1466-4283
language eng
recordid cdi_crossref_primary_10_1080_00036846_2021_1881430
source International Bibliography of the Social Sciences (IBSS); Business Source Ultimate; EBSCO_EconLit with Full Text(美国经济学会全文数据库); Taylor and Francis Social Sciences and Humanities Collection
subjects delta hedging
Economic analysis
Economic theory
European option
limit order
Liquidity
Liquidity cost
Monte Carlo simulation
Multiplication
Prices
quadratic variation
Securities prices
Simulation
Stock prices
title Analytic formula for option margin with liquidity costs under dynamic delta hedging
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A42%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytic%20formula%20for%20option%20margin%20with%20liquidity%20costs%20under%20dynamic%20delta%20hedging&rft.jtitle=Applied%20economics&rft.au=Lee,%20Kyungsub&rft.date=2021-06-21&rft.volume=53&rft.issue=29&rft.spage=3391&rft.epage=3407&rft.pages=3391-3407&rft.issn=0003-6846&rft.eissn=1466-4283&rft_id=info:doi/10.1080/00036846.2021.1881430&rft_dat=%3Cproquest_cross%3E2536144326%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c376t-c38fe1c935b0d92c8d35fee2115b34a69dff5bc5bae265d45d6e94073a5450fe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2536144326&rft_id=info:pmid/&rfr_iscdi=true