Loading…

The shakedown: developing an indoor-localization system for quantifying toilet usage in offices

The design of sanitary facilities in Australia is subject to regulations prescribing minimum provision. In commercial office buildings, this is tied to male and female employee numbers. These requirements are derived from mathematical models, using queuing theory. Evidence of inadequate sanitary pro...

Full description

Saved in:
Bibliographic Details
Published in:Architectural science review 2020-07, Vol.63 (3-4), p.325-338
Main Authors: Doherty, B., Gardner, N., Ray, A., Higgs, B., Varshney, I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c343t-60fb7e6984d23782e52917eb18d3cf6b79bfc9650176513cd2f8f7370d06372e3
cites cdi_FETCH-LOGICAL-c343t-60fb7e6984d23782e52917eb18d3cf6b79bfc9650176513cd2f8f7370d06372e3
container_end_page 338
container_issue 3-4
container_start_page 325
container_title Architectural science review
container_volume 63
creator Doherty, B.
Gardner, N.
Ray, A.
Higgs, B.
Varshney, I.
description The design of sanitary facilities in Australia is subject to regulations prescribing minimum provision. In commercial office buildings, this is tied to male and female employee numbers. These requirements are derived from mathematical models, using queuing theory. Evidence of inadequate sanitary provision in numerous contexts points to the necessity to refresh the data, and thinking, that underpins these regulations. Collecting empirical data on human occupancy in sanitary facilities using data science methods is a new way to achieve this and support a shift towards the evidence-based design of sanitary spaces. Accordingly, this article outlines the development and implementation of a novel, privacy-preserving, indoor localization system (ILS) that combines sensors and machine learning to collect and analyse toilet usage data in an office. By evaluating the system's capacity to identify occupancy patterns this research contributes to scholarship on ILS methods as well as a valuable data-set on Australian toilet usage..
doi_str_mv 10.1080/00038628.2020.1748869
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_00038628_2020_1748869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2480614940</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-60fb7e6984d23782e52917eb18d3cf6b79bfc9650176513cd2f8f7370d06372e3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKs_QcjSzdQ8ZpKMK6X4AsGNrkOaudFomrTJ1FJ_vTNUt64uHL5z4H4InVMyo0SRS0IIV4KpGSNsiGStlGgP0ITKRlWtYOwQTUamGqFjdFLKByG0aWs5QfrlHXB5N5_QpW28wh18QUgrH9-widjHLqVchWRN8N-m9ynisis9LLFLGa83Jvbe7Ua6Tz5AjzfFvMHQw8k5b6GcoiNnQoGz3ztFr3e3L_OH6un5_nF-81RZXvO-EsQtJIhW1R3jUjFoWEslLKjquHViIduFs61oCJWiodx2zCknuSQdEVwy4FN0sd9d5bTeQOn10hcLIZgIaVM0qxURtG5rMqDNHrU5lZLB6VX2S5N3mhI9CtV_QvUoVP8KHXrX-56Pw_NLs005dLo3u5CyyyZaXzT_f-IHnN19iQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480614940</pqid></control><display><type>article</type><title>The shakedown: developing an indoor-localization system for quantifying toilet usage in offices</title><source>Avery Index to Architectural Periodicals</source><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)</source><creator>Doherty, B. ; Gardner, N. ; Ray, A. ; Higgs, B. ; Varshney, I.</creator><creatorcontrib>Doherty, B. ; Gardner, N. ; Ray, A. ; Higgs, B. ; Varshney, I.</creatorcontrib><description>The design of sanitary facilities in Australia is subject to regulations prescribing minimum provision. In commercial office buildings, this is tied to male and female employee numbers. These requirements are derived from mathematical models, using queuing theory. Evidence of inadequate sanitary provision in numerous contexts points to the necessity to refresh the data, and thinking, that underpins these regulations. Collecting empirical data on human occupancy in sanitary facilities using data science methods is a new way to achieve this and support a shift towards the evidence-based design of sanitary spaces. Accordingly, this article outlines the development and implementation of a novel, privacy-preserving, indoor localization system (ILS) that combines sensors and machine learning to collect and analyse toilet usage data in an office. By evaluating the system's capacity to identify occupancy patterns this research contributes to scholarship on ILS methods as well as a valuable data-set on Australian toilet usage..</description><identifier>ISSN: 0003-8628</identifier><identifier>EISSN: 1758-9622</identifier><identifier>DOI: 10.1080/00038628.2020.1748869</identifier><language>eng</language><publisher>Taylor &amp; Francis</publisher><subject>Data science ; evidence-based design (EBD) ; indoor-localization ; machine learning ; post-occupancy evaluation (POE) ; sensors ; toilet usage</subject><ispartof>Architectural science review, 2020-07, Vol.63 (3-4), p.325-338</ispartof><rights>2020 Informa UK Limited, trading as Taylor &amp; Francis Group 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-60fb7e6984d23782e52917eb18d3cf6b79bfc9650176513cd2f8f7370d06372e3</citedby><cites>FETCH-LOGICAL-c343t-60fb7e6984d23782e52917eb18d3cf6b79bfc9650176513cd2f8f7370d06372e3</cites><orcidid>0000-0001-8448-9859 ; 0000-0001-6126-6716 ; 0000-0002-8497-4309 ; 0000-0002-2305-2765 ; 0000-0002-3297-7372</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail></links><search><creatorcontrib>Doherty, B.</creatorcontrib><creatorcontrib>Gardner, N.</creatorcontrib><creatorcontrib>Ray, A.</creatorcontrib><creatorcontrib>Higgs, B.</creatorcontrib><creatorcontrib>Varshney, I.</creatorcontrib><title>The shakedown: developing an indoor-localization system for quantifying toilet usage in offices</title><title>Architectural science review</title><description>The design of sanitary facilities in Australia is subject to regulations prescribing minimum provision. In commercial office buildings, this is tied to male and female employee numbers. These requirements are derived from mathematical models, using queuing theory. Evidence of inadequate sanitary provision in numerous contexts points to the necessity to refresh the data, and thinking, that underpins these regulations. Collecting empirical data on human occupancy in sanitary facilities using data science methods is a new way to achieve this and support a shift towards the evidence-based design of sanitary spaces. Accordingly, this article outlines the development and implementation of a novel, privacy-preserving, indoor localization system (ILS) that combines sensors and machine learning to collect and analyse toilet usage data in an office. By evaluating the system's capacity to identify occupancy patterns this research contributes to scholarship on ILS methods as well as a valuable data-set on Australian toilet usage..</description><subject>Data science</subject><subject>evidence-based design (EBD)</subject><subject>indoor-localization</subject><subject>machine learning</subject><subject>post-occupancy evaluation (POE)</subject><subject>sensors</subject><subject>toilet usage</subject><issn>0003-8628</issn><issn>1758-9622</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>7QK</sourceid><recordid>eNp9kEtLAzEUhYMoWKs_QcjSzdQ8ZpKMK6X4AsGNrkOaudFomrTJ1FJ_vTNUt64uHL5z4H4InVMyo0SRS0IIV4KpGSNsiGStlGgP0ITKRlWtYOwQTUamGqFjdFLKByG0aWs5QfrlHXB5N5_QpW28wh18QUgrH9-widjHLqVchWRN8N-m9ynisis9LLFLGa83Jvbe7Ua6Tz5AjzfFvMHQw8k5b6GcoiNnQoGz3ztFr3e3L_OH6un5_nF-81RZXvO-EsQtJIhW1R3jUjFoWEslLKjquHViIduFs61oCJWiodx2zCknuSQdEVwy4FN0sd9d5bTeQOn10hcLIZgIaVM0qxURtG5rMqDNHrU5lZLB6VX2S5N3mhI9CtV_QvUoVP8KHXrX-56Pw_NLs005dLo3u5CyyyZaXzT_f-IHnN19iQ</recordid><startdate>20200703</startdate><enddate>20200703</enddate><creator>Doherty, B.</creator><creator>Gardner, N.</creator><creator>Ray, A.</creator><creator>Higgs, B.</creator><creator>Varshney, I.</creator><general>Taylor &amp; Francis</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QK</scope><scope>FUQ</scope><scope>KCI</scope><orcidid>https://orcid.org/0000-0001-8448-9859</orcidid><orcidid>https://orcid.org/0000-0001-6126-6716</orcidid><orcidid>https://orcid.org/0000-0002-8497-4309</orcidid><orcidid>https://orcid.org/0000-0002-2305-2765</orcidid><orcidid>https://orcid.org/0000-0002-3297-7372</orcidid></search><sort><creationdate>20200703</creationdate><title>The shakedown: developing an indoor-localization system for quantifying toilet usage in offices</title><author>Doherty, B. ; Gardner, N. ; Ray, A. ; Higgs, B. ; Varshney, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-60fb7e6984d23782e52917eb18d3cf6b79bfc9650176513cd2f8f7370d06372e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Data science</topic><topic>evidence-based design (EBD)</topic><topic>indoor-localization</topic><topic>machine learning</topic><topic>post-occupancy evaluation (POE)</topic><topic>sensors</topic><topic>toilet usage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Doherty, B.</creatorcontrib><creatorcontrib>Gardner, N.</creatorcontrib><creatorcontrib>Ray, A.</creatorcontrib><creatorcontrib>Higgs, B.</creatorcontrib><creatorcontrib>Varshney, I.</creatorcontrib><collection>CrossRef</collection><collection>Avery Index to Architectural Periodicals</collection><collection>Avery Index to Architectural Periodicals</collection><collection>Avery Index to Architectural Periodicals</collection><jtitle>Architectural science review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Doherty, B.</au><au>Gardner, N.</au><au>Ray, A.</au><au>Higgs, B.</au><au>Varshney, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The shakedown: developing an indoor-localization system for quantifying toilet usage in offices</atitle><jtitle>Architectural science review</jtitle><date>2020-07-03</date><risdate>2020</risdate><volume>63</volume><issue>3-4</issue><spage>325</spage><epage>338</epage><pages>325-338</pages><issn>0003-8628</issn><eissn>1758-9622</eissn><abstract>The design of sanitary facilities in Australia is subject to regulations prescribing minimum provision. In commercial office buildings, this is tied to male and female employee numbers. These requirements are derived from mathematical models, using queuing theory. Evidence of inadequate sanitary provision in numerous contexts points to the necessity to refresh the data, and thinking, that underpins these regulations. Collecting empirical data on human occupancy in sanitary facilities using data science methods is a new way to achieve this and support a shift towards the evidence-based design of sanitary spaces. Accordingly, this article outlines the development and implementation of a novel, privacy-preserving, indoor localization system (ILS) that combines sensors and machine learning to collect and analyse toilet usage data in an office. By evaluating the system's capacity to identify occupancy patterns this research contributes to scholarship on ILS methods as well as a valuable data-set on Australian toilet usage..</abstract><pub>Taylor &amp; Francis</pub><doi>10.1080/00038628.2020.1748869</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8448-9859</orcidid><orcidid>https://orcid.org/0000-0001-6126-6716</orcidid><orcidid>https://orcid.org/0000-0002-8497-4309</orcidid><orcidid>https://orcid.org/0000-0002-2305-2765</orcidid><orcidid>https://orcid.org/0000-0002-3297-7372</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-8628
ispartof Architectural science review, 2020-07, Vol.63 (3-4), p.325-338
issn 0003-8628
1758-9622
language eng
recordid cdi_crossref_primary_10_1080_00038628_2020_1748869
source Avery Index to Architectural Periodicals; Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)
subjects Data science
evidence-based design (EBD)
indoor-localization
machine learning
post-occupancy evaluation (POE)
sensors
toilet usage
title The shakedown: developing an indoor-localization system for quantifying toilet usage in offices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-10T01%3A02%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20shakedown:%20developing%20an%20indoor-localization%20system%20for%20quantifying%20toilet%20usage%20in%20offices&rft.jtitle=Architectural%20science%20review&rft.au=Doherty,%20B.&rft.date=2020-07-03&rft.volume=63&rft.issue=3-4&rft.spage=325&rft.epage=338&rft.pages=325-338&rft.issn=0003-8628&rft.eissn=1758-9622&rft_id=info:doi/10.1080/00038628.2020.1748869&rft_dat=%3Cproquest_cross%3E2480614940%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c343t-60fb7e6984d23782e52917eb18d3cf6b79bfc9650176513cd2f8f7370d06372e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2480614940&rft_id=info:pmid/&rfr_iscdi=true