Loading…
The shakedown: developing an indoor-localization system for quantifying toilet usage in offices
The design of sanitary facilities in Australia is subject to regulations prescribing minimum provision. In commercial office buildings, this is tied to male and female employee numbers. These requirements are derived from mathematical models, using queuing theory. Evidence of inadequate sanitary pro...
Saved in:
Published in: | Architectural science review 2020-07, Vol.63 (3-4), p.325-338 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c343t-60fb7e6984d23782e52917eb18d3cf6b79bfc9650176513cd2f8f7370d06372e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c343t-60fb7e6984d23782e52917eb18d3cf6b79bfc9650176513cd2f8f7370d06372e3 |
container_end_page | 338 |
container_issue | 3-4 |
container_start_page | 325 |
container_title | Architectural science review |
container_volume | 63 |
creator | Doherty, B. Gardner, N. Ray, A. Higgs, B. Varshney, I. |
description | The design of sanitary facilities in Australia is subject to regulations prescribing minimum provision. In commercial office buildings, this is tied to male and female employee numbers. These requirements are derived from mathematical models, using queuing theory. Evidence of inadequate sanitary provision in numerous contexts points to the necessity to refresh the data, and thinking, that underpins these regulations. Collecting empirical data on human occupancy in sanitary facilities using data science methods is a new way to achieve this and support a shift towards the evidence-based design of sanitary spaces. Accordingly, this article outlines the development and implementation of a novel, privacy-preserving, indoor localization system (ILS) that combines sensors and machine learning to collect and analyse toilet usage data in an office. By evaluating the system's capacity to identify occupancy patterns this research contributes to scholarship on ILS methods as well as a valuable data-set on Australian toilet usage.. |
doi_str_mv | 10.1080/00038628.2020.1748869 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_00038628_2020_1748869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2480614940</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-60fb7e6984d23782e52917eb18d3cf6b79bfc9650176513cd2f8f7370d06372e3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKs_QcjSzdQ8ZpKMK6X4AsGNrkOaudFomrTJ1FJ_vTNUt64uHL5z4H4InVMyo0SRS0IIV4KpGSNsiGStlGgP0ITKRlWtYOwQTUamGqFjdFLKByG0aWs5QfrlHXB5N5_QpW28wh18QUgrH9-widjHLqVchWRN8N-m9ynisis9LLFLGa83Jvbe7Ua6Tz5AjzfFvMHQw8k5b6GcoiNnQoGz3ztFr3e3L_OH6un5_nF-81RZXvO-EsQtJIhW1R3jUjFoWEslLKjquHViIduFs61oCJWiodx2zCknuSQdEVwy4FN0sd9d5bTeQOn10hcLIZgIaVM0qxURtG5rMqDNHrU5lZLB6VX2S5N3mhI9CtV_QvUoVP8KHXrX-56Pw_NLs005dLo3u5CyyyZaXzT_f-IHnN19iQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480614940</pqid></control><display><type>article</type><title>The shakedown: developing an indoor-localization system for quantifying toilet usage in offices</title><source>Avery Index to Architectural Periodicals</source><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)</source><creator>Doherty, B. ; Gardner, N. ; Ray, A. ; Higgs, B. ; Varshney, I.</creator><creatorcontrib>Doherty, B. ; Gardner, N. ; Ray, A. ; Higgs, B. ; Varshney, I.</creatorcontrib><description>The design of sanitary facilities in Australia is subject to regulations prescribing minimum provision. In commercial office buildings, this is tied to male and female employee numbers. These requirements are derived from mathematical models, using queuing theory. Evidence of inadequate sanitary provision in numerous contexts points to the necessity to refresh the data, and thinking, that underpins these regulations. Collecting empirical data on human occupancy in sanitary facilities using data science methods is a new way to achieve this and support a shift towards the evidence-based design of sanitary spaces. Accordingly, this article outlines the development and implementation of a novel, privacy-preserving, indoor localization system (ILS) that combines sensors and machine learning to collect and analyse toilet usage data in an office. By evaluating the system's capacity to identify occupancy patterns this research contributes to scholarship on ILS methods as well as a valuable data-set on Australian toilet usage..</description><identifier>ISSN: 0003-8628</identifier><identifier>EISSN: 1758-9622</identifier><identifier>DOI: 10.1080/00038628.2020.1748869</identifier><language>eng</language><publisher>Taylor & Francis</publisher><subject>Data science ; evidence-based design (EBD) ; indoor-localization ; machine learning ; post-occupancy evaluation (POE) ; sensors ; toilet usage</subject><ispartof>Architectural science review, 2020-07, Vol.63 (3-4), p.325-338</ispartof><rights>2020 Informa UK Limited, trading as Taylor & Francis Group 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-60fb7e6984d23782e52917eb18d3cf6b79bfc9650176513cd2f8f7370d06372e3</citedby><cites>FETCH-LOGICAL-c343t-60fb7e6984d23782e52917eb18d3cf6b79bfc9650176513cd2f8f7370d06372e3</cites><orcidid>0000-0001-8448-9859 ; 0000-0001-6126-6716 ; 0000-0002-8497-4309 ; 0000-0002-2305-2765 ; 0000-0002-3297-7372</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail></links><search><creatorcontrib>Doherty, B.</creatorcontrib><creatorcontrib>Gardner, N.</creatorcontrib><creatorcontrib>Ray, A.</creatorcontrib><creatorcontrib>Higgs, B.</creatorcontrib><creatorcontrib>Varshney, I.</creatorcontrib><title>The shakedown: developing an indoor-localization system for quantifying toilet usage in offices</title><title>Architectural science review</title><description>The design of sanitary facilities in Australia is subject to regulations prescribing minimum provision. In commercial office buildings, this is tied to male and female employee numbers. These requirements are derived from mathematical models, using queuing theory. Evidence of inadequate sanitary provision in numerous contexts points to the necessity to refresh the data, and thinking, that underpins these regulations. Collecting empirical data on human occupancy in sanitary facilities using data science methods is a new way to achieve this and support a shift towards the evidence-based design of sanitary spaces. Accordingly, this article outlines the development and implementation of a novel, privacy-preserving, indoor localization system (ILS) that combines sensors and machine learning to collect and analyse toilet usage data in an office. By evaluating the system's capacity to identify occupancy patterns this research contributes to scholarship on ILS methods as well as a valuable data-set on Australian toilet usage..</description><subject>Data science</subject><subject>evidence-based design (EBD)</subject><subject>indoor-localization</subject><subject>machine learning</subject><subject>post-occupancy evaluation (POE)</subject><subject>sensors</subject><subject>toilet usage</subject><issn>0003-8628</issn><issn>1758-9622</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>7QK</sourceid><recordid>eNp9kEtLAzEUhYMoWKs_QcjSzdQ8ZpKMK6X4AsGNrkOaudFomrTJ1FJ_vTNUt64uHL5z4H4InVMyo0SRS0IIV4KpGSNsiGStlGgP0ITKRlWtYOwQTUamGqFjdFLKByG0aWs5QfrlHXB5N5_QpW28wh18QUgrH9-widjHLqVchWRN8N-m9ynisis9LLFLGa83Jvbe7Ua6Tz5AjzfFvMHQw8k5b6GcoiNnQoGz3ztFr3e3L_OH6un5_nF-81RZXvO-EsQtJIhW1R3jUjFoWEslLKjquHViIduFs61oCJWiodx2zCknuSQdEVwy4FN0sd9d5bTeQOn10hcLIZgIaVM0qxURtG5rMqDNHrU5lZLB6VX2S5N3mhI9CtV_QvUoVP8KHXrX-56Pw_NLs005dLo3u5CyyyZaXzT_f-IHnN19iQ</recordid><startdate>20200703</startdate><enddate>20200703</enddate><creator>Doherty, B.</creator><creator>Gardner, N.</creator><creator>Ray, A.</creator><creator>Higgs, B.</creator><creator>Varshney, I.</creator><general>Taylor & Francis</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QK</scope><scope>FUQ</scope><scope>KCI</scope><orcidid>https://orcid.org/0000-0001-8448-9859</orcidid><orcidid>https://orcid.org/0000-0001-6126-6716</orcidid><orcidid>https://orcid.org/0000-0002-8497-4309</orcidid><orcidid>https://orcid.org/0000-0002-2305-2765</orcidid><orcidid>https://orcid.org/0000-0002-3297-7372</orcidid></search><sort><creationdate>20200703</creationdate><title>The shakedown: developing an indoor-localization system for quantifying toilet usage in offices</title><author>Doherty, B. ; Gardner, N. ; Ray, A. ; Higgs, B. ; Varshney, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-60fb7e6984d23782e52917eb18d3cf6b79bfc9650176513cd2f8f7370d06372e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Data science</topic><topic>evidence-based design (EBD)</topic><topic>indoor-localization</topic><topic>machine learning</topic><topic>post-occupancy evaluation (POE)</topic><topic>sensors</topic><topic>toilet usage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Doherty, B.</creatorcontrib><creatorcontrib>Gardner, N.</creatorcontrib><creatorcontrib>Ray, A.</creatorcontrib><creatorcontrib>Higgs, B.</creatorcontrib><creatorcontrib>Varshney, I.</creatorcontrib><collection>CrossRef</collection><collection>Avery Index to Architectural Periodicals</collection><collection>Avery Index to Architectural Periodicals</collection><collection>Avery Index to Architectural Periodicals</collection><jtitle>Architectural science review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Doherty, B.</au><au>Gardner, N.</au><au>Ray, A.</au><au>Higgs, B.</au><au>Varshney, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The shakedown: developing an indoor-localization system for quantifying toilet usage in offices</atitle><jtitle>Architectural science review</jtitle><date>2020-07-03</date><risdate>2020</risdate><volume>63</volume><issue>3-4</issue><spage>325</spage><epage>338</epage><pages>325-338</pages><issn>0003-8628</issn><eissn>1758-9622</eissn><abstract>The design of sanitary facilities in Australia is subject to regulations prescribing minimum provision. In commercial office buildings, this is tied to male and female employee numbers. These requirements are derived from mathematical models, using queuing theory. Evidence of inadequate sanitary provision in numerous contexts points to the necessity to refresh the data, and thinking, that underpins these regulations. Collecting empirical data on human occupancy in sanitary facilities using data science methods is a new way to achieve this and support a shift towards the evidence-based design of sanitary spaces. Accordingly, this article outlines the development and implementation of a novel, privacy-preserving, indoor localization system (ILS) that combines sensors and machine learning to collect and analyse toilet usage data in an office. By evaluating the system's capacity to identify occupancy patterns this research contributes to scholarship on ILS methods as well as a valuable data-set on Australian toilet usage..</abstract><pub>Taylor & Francis</pub><doi>10.1080/00038628.2020.1748869</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8448-9859</orcidid><orcidid>https://orcid.org/0000-0001-6126-6716</orcidid><orcidid>https://orcid.org/0000-0002-8497-4309</orcidid><orcidid>https://orcid.org/0000-0002-2305-2765</orcidid><orcidid>https://orcid.org/0000-0002-3297-7372</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-8628 |
ispartof | Architectural science review, 2020-07, Vol.63 (3-4), p.325-338 |
issn | 0003-8628 1758-9622 |
language | eng |
recordid | cdi_crossref_primary_10_1080_00038628_2020_1748869 |
source | Avery Index to Architectural Periodicals; Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list) |
subjects | Data science evidence-based design (EBD) indoor-localization machine learning post-occupancy evaluation (POE) sensors toilet usage |
title | The shakedown: developing an indoor-localization system for quantifying toilet usage in offices |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-10T01%3A02%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20shakedown:%20developing%20an%20indoor-localization%20system%20for%20quantifying%20toilet%20usage%20in%20offices&rft.jtitle=Architectural%20science%20review&rft.au=Doherty,%20B.&rft.date=2020-07-03&rft.volume=63&rft.issue=3-4&rft.spage=325&rft.epage=338&rft.pages=325-338&rft.issn=0003-8628&rft.eissn=1758-9622&rft_id=info:doi/10.1080/00038628.2020.1748869&rft_dat=%3Cproquest_cross%3E2480614940%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c343t-60fb7e6984d23782e52917eb18d3cf6b79bfc9650176513cd2f8f7370d06372e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2480614940&rft_id=info:pmid/&rfr_iscdi=true |