Loading…

Cooperative SLAM for multiple UGVs navigation using SVSF filter

The aim of this paper is to present a cooperative simultaneous localization and mapping (CSLAM) solution based on a laser telemeter. The proposed solution gives the opportunity to a group of unmanned ground vehicles (UGVs) to construct a large map and localize themselves without any human interventi...

Full description

Saved in:
Bibliographic Details
Published in:Automatika 2017-01, Vol.58 (1), p.119-129
Main Authors: Demim, Fethi, Nemra, Abdelkrim, Louadj, Kahina, Hamerlain, Mustapha, Bazoula, Abdelouahab
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c423t-3870fb839591779a9db6f1ceb82a2e73740c9fed7471645ae2dac440c07c77373
cites cdi_FETCH-LOGICAL-c423t-3870fb839591779a9db6f1ceb82a2e73740c9fed7471645ae2dac440c07c77373
container_end_page 129
container_issue 1
container_start_page 119
container_title Automatika
container_volume 58
creator Demim, Fethi
Nemra, Abdelkrim
Louadj, Kahina
Hamerlain, Mustapha
Bazoula, Abdelouahab
description The aim of this paper is to present a cooperative simultaneous localization and mapping (CSLAM) solution based on a laser telemeter. The proposed solution gives the opportunity to a group of unmanned ground vehicles (UGVs) to construct a large map and localize themselves without any human intervention. Many solutions proposed to solve this problem, most of them are based on the sequential probabilistic approach, based around Extended Kalman Filter (EKF) or the Rao-Blackwellized particle filter. In our work, we propose a new alternative to avoid these limitations, a novel alternative solution based on the smooth variable structure filter (SVSF) to solve the UGV SLAM problem is proposed. This version of SVSF-SLAM algorithm uses a boundary layer width vector and does not require covariance derivation. The new algorithm has been developed to implement the SVSF filter for CSLAM. Our contribution deals with adapting the SVSF to solve the CSLAM problem for multiple UGVs. The algorithms developed in this work were implemented using a swarm of mobile robots Pioneer 3-AT. Two mapping approaches, point-based and line-based, are implemented and validated experimentally using 2D laser telemeter sensors. Good results are obtained by the Cooperative SVSF-SLAM algorithm compared with the Cooperative EKF-SLAM.
doi_str_mv 10.1080/00051144.2017.1372123
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_00051144_2017_1372123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2215257758</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-3870fb839591779a9db6f1ceb82a2e73740c9fed7471645ae2dac440c07c77373</originalsourceid><addsrcrecordid>eNp9kF1PwjAUhhujiYj-BJMlXg_7tbW7UkIETTBeINw2pWuxOFZsNwz_3i5DL73q6TnPeXPyAHCL4AhBDu8hhBlClI4wRGyECMMIkzMwQJzylBAOz8GgY9IOugRXIWzjLyc5HICHiXN77WVjDzpZzMeviXE-2bVVY_eVTpazVUhqebCbSLg6aYOtN8litZgmxlaN9tfgwsgq6JvTOwTL6dP75Dmdv81eJuN5qigmTUo4g2bNSZEViLFCFuU6N0jpNccSa0YYhaowumSUoZxmUuNSKhqbkCkWx2QI0j73wyv5Kfbe7qQ_Ciet6DvBKx1LgSEhlEf-ruf33n21OjRi61pfxxMFxijDGWNZR2U9pbwLwWvzF4yg6NyKX7eicytObuPeY79n66hrJ7-dr0rRyGPlvPGyVjYI8n_ED9zYfkI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2215257758</pqid></control><display><type>article</type><title>Cooperative SLAM for multiple UGVs navigation using SVSF filter</title><source>Taylor &amp; Francis Open Access</source><creator>Demim, Fethi ; Nemra, Abdelkrim ; Louadj, Kahina ; Hamerlain, Mustapha ; Bazoula, Abdelouahab</creator><creatorcontrib>Demim, Fethi ; Nemra, Abdelkrim ; Louadj, Kahina ; Hamerlain, Mustapha ; Bazoula, Abdelouahab</creatorcontrib><description>The aim of this paper is to present a cooperative simultaneous localization and mapping (CSLAM) solution based on a laser telemeter. The proposed solution gives the opportunity to a group of unmanned ground vehicles (UGVs) to construct a large map and localize themselves without any human intervention. Many solutions proposed to solve this problem, most of them are based on the sequential probabilistic approach, based around Extended Kalman Filter (EKF) or the Rao-Blackwellized particle filter. In our work, we propose a new alternative to avoid these limitations, a novel alternative solution based on the smooth variable structure filter (SVSF) to solve the UGV SLAM problem is proposed. This version of SVSF-SLAM algorithm uses a boundary layer width vector and does not require covariance derivation. The new algorithm has been developed to implement the SVSF filter for CSLAM. Our contribution deals with adapting the SVSF to solve the CSLAM problem for multiple UGVs. The algorithms developed in this work were implemented using a swarm of mobile robots Pioneer 3-AT. Two mapping approaches, point-based and line-based, are implemented and validated experimentally using 2D laser telemeter sensors. Good results are obtained by the Cooperative SVSF-SLAM algorithm compared with the Cooperative EKF-SLAM.</description><identifier>ISSN: 0005-1144</identifier><identifier>EISSN: 1848-3380</identifier><identifier>DOI: 10.1080/00051144.2017.1372123</identifier><language>eng</language><publisher>Ljubljana: Taylor &amp; Francis</publisher><subject>Algorithms ; autonomous navigation ; Boundary layers ; cooperative SLAM ; Covariance ; Extended Kalman filter ; Localization ; map building ; mobile robots ; sensor fusion ; Simultaneous localization and mapping ; SVSF filter ; Unmanned ground vehicles</subject><ispartof>Automatika, 2017-01, Vol.58 (1), p.119-129</ispartof><rights>2017 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group 2017</rights><rights>2017 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-3870fb839591779a9db6f1ceb82a2e73740c9fed7471645ae2dac440c07c77373</citedby><cites>FETCH-LOGICAL-c423t-3870fb839591779a9db6f1ceb82a2e73740c9fed7471645ae2dac440c07c77373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://hrcak.srce.hr/logo_broj/16318.jpg</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/00051144.2017.1372123$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/00051144.2017.1372123$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27481,27903,27904,59120,59121</link.rule.ids></links><search><creatorcontrib>Demim, Fethi</creatorcontrib><creatorcontrib>Nemra, Abdelkrim</creatorcontrib><creatorcontrib>Louadj, Kahina</creatorcontrib><creatorcontrib>Hamerlain, Mustapha</creatorcontrib><creatorcontrib>Bazoula, Abdelouahab</creatorcontrib><title>Cooperative SLAM for multiple UGVs navigation using SVSF filter</title><title>Automatika</title><description>The aim of this paper is to present a cooperative simultaneous localization and mapping (CSLAM) solution based on a laser telemeter. The proposed solution gives the opportunity to a group of unmanned ground vehicles (UGVs) to construct a large map and localize themselves without any human intervention. Many solutions proposed to solve this problem, most of them are based on the sequential probabilistic approach, based around Extended Kalman Filter (EKF) or the Rao-Blackwellized particle filter. In our work, we propose a new alternative to avoid these limitations, a novel alternative solution based on the smooth variable structure filter (SVSF) to solve the UGV SLAM problem is proposed. This version of SVSF-SLAM algorithm uses a boundary layer width vector and does not require covariance derivation. The new algorithm has been developed to implement the SVSF filter for CSLAM. Our contribution deals with adapting the SVSF to solve the CSLAM problem for multiple UGVs. The algorithms developed in this work were implemented using a swarm of mobile robots Pioneer 3-AT. Two mapping approaches, point-based and line-based, are implemented and validated experimentally using 2D laser telemeter sensors. Good results are obtained by the Cooperative SVSF-SLAM algorithm compared with the Cooperative EKF-SLAM.</description><subject>Algorithms</subject><subject>autonomous navigation</subject><subject>Boundary layers</subject><subject>cooperative SLAM</subject><subject>Covariance</subject><subject>Extended Kalman filter</subject><subject>Localization</subject><subject>map building</subject><subject>mobile robots</subject><subject>sensor fusion</subject><subject>Simultaneous localization and mapping</subject><subject>SVSF filter</subject><subject>Unmanned ground vehicles</subject><issn>0005-1144</issn><issn>1848-3380</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><recordid>eNp9kF1PwjAUhhujiYj-BJMlXg_7tbW7UkIETTBeINw2pWuxOFZsNwz_3i5DL73q6TnPeXPyAHCL4AhBDu8hhBlClI4wRGyECMMIkzMwQJzylBAOz8GgY9IOugRXIWzjLyc5HICHiXN77WVjDzpZzMeviXE-2bVVY_eVTpazVUhqebCbSLg6aYOtN8litZgmxlaN9tfgwsgq6JvTOwTL6dP75Dmdv81eJuN5qigmTUo4g2bNSZEViLFCFuU6N0jpNccSa0YYhaowumSUoZxmUuNSKhqbkCkWx2QI0j73wyv5Kfbe7qQ_Ciet6DvBKx1LgSEhlEf-ruf33n21OjRi61pfxxMFxijDGWNZR2U9pbwLwWvzF4yg6NyKX7eicytObuPeY79n66hrJ7-dr0rRyGPlvPGyVjYI8n_ED9zYfkI</recordid><startdate>20170102</startdate><enddate>20170102</enddate><creator>Demim, Fethi</creator><creator>Nemra, Abdelkrim</creator><creator>Louadj, Kahina</creator><creator>Hamerlain, Mustapha</creator><creator>Bazoula, Abdelouahab</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><general>KoREMA - Hrvatsko društvo za komunikacije,računarstvo, elektroniku, mjerenja i automatiku</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8FD</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>VP8</scope></search><sort><creationdate>20170102</creationdate><title>Cooperative SLAM for multiple UGVs navigation using SVSF filter</title><author>Demim, Fethi ; Nemra, Abdelkrim ; Louadj, Kahina ; Hamerlain, Mustapha ; Bazoula, Abdelouahab</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-3870fb839591779a9db6f1ceb82a2e73740c9fed7471645ae2dac440c07c77373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>autonomous navigation</topic><topic>Boundary layers</topic><topic>cooperative SLAM</topic><topic>Covariance</topic><topic>Extended Kalman filter</topic><topic>Localization</topic><topic>map building</topic><topic>mobile robots</topic><topic>sensor fusion</topic><topic>Simultaneous localization and mapping</topic><topic>SVSF filter</topic><topic>Unmanned ground vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Demim, Fethi</creatorcontrib><creatorcontrib>Nemra, Abdelkrim</creatorcontrib><creatorcontrib>Louadj, Kahina</creatorcontrib><creatorcontrib>Hamerlain, Mustapha</creatorcontrib><creatorcontrib>Bazoula, Abdelouahab</creatorcontrib><collection>Taylor &amp; Francis Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ProQuest research library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Hrcak: Portal of scientific journals of Croatia</collection><jtitle>Automatika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Demim, Fethi</au><au>Nemra, Abdelkrim</au><au>Louadj, Kahina</au><au>Hamerlain, Mustapha</au><au>Bazoula, Abdelouahab</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cooperative SLAM for multiple UGVs navigation using SVSF filter</atitle><jtitle>Automatika</jtitle><date>2017-01-02</date><risdate>2017</risdate><volume>58</volume><issue>1</issue><spage>119</spage><epage>129</epage><pages>119-129</pages><issn>0005-1144</issn><eissn>1848-3380</eissn><abstract>The aim of this paper is to present a cooperative simultaneous localization and mapping (CSLAM) solution based on a laser telemeter. The proposed solution gives the opportunity to a group of unmanned ground vehicles (UGVs) to construct a large map and localize themselves without any human intervention. Many solutions proposed to solve this problem, most of them are based on the sequential probabilistic approach, based around Extended Kalman Filter (EKF) or the Rao-Blackwellized particle filter. In our work, we propose a new alternative to avoid these limitations, a novel alternative solution based on the smooth variable structure filter (SVSF) to solve the UGV SLAM problem is proposed. This version of SVSF-SLAM algorithm uses a boundary layer width vector and does not require covariance derivation. The new algorithm has been developed to implement the SVSF filter for CSLAM. Our contribution deals with adapting the SVSF to solve the CSLAM problem for multiple UGVs. The algorithms developed in this work were implemented using a swarm of mobile robots Pioneer 3-AT. Two mapping approaches, point-based and line-based, are implemented and validated experimentally using 2D laser telemeter sensors. Good results are obtained by the Cooperative SVSF-SLAM algorithm compared with the Cooperative EKF-SLAM.</abstract><cop>Ljubljana</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/00051144.2017.1372123</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0005-1144
ispartof Automatika, 2017-01, Vol.58 (1), p.119-129
issn 0005-1144
1848-3380
language eng
recordid cdi_crossref_primary_10_1080_00051144_2017_1372123
source Taylor & Francis Open Access
subjects Algorithms
autonomous navigation
Boundary layers
cooperative SLAM
Covariance
Extended Kalman filter
Localization
map building
mobile robots
sensor fusion
Simultaneous localization and mapping
SVSF filter
Unmanned ground vehicles
title Cooperative SLAM for multiple UGVs navigation using SVSF filter
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T17%3A11%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cooperative%20SLAM%20for%20multiple%20UGVs%20navigation%20using%20SVSF%20filter&rft.jtitle=Automatika&rft.au=Demim,%20Fethi&rft.date=2017-01-02&rft.volume=58&rft.issue=1&rft.spage=119&rft.epage=129&rft.pages=119-129&rft.issn=0005-1144&rft.eissn=1848-3380&rft_id=info:doi/10.1080/00051144.2017.1372123&rft_dat=%3Cproquest_cross%3E2215257758%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c423t-3870fb839591779a9db6f1ceb82a2e73740c9fed7471645ae2dac440c07c77373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2215257758&rft_id=info:pmid/&rfr_iscdi=true