Loading…

The Role of Unmixedness and Chemical Kinetics in Driving Combustion Instabilities in Lean Premixed Combustors

This paper presents the results of a study of the potential causes of frequently observed combustion instabilities in low NOx gas turbines (LNGT) that burn gaseous fuels in a premixed mode. The study was motivated by indications that such systems are highly sensitive to equivalence ratio perturbatio...

Full description

Saved in:
Bibliographic Details
Published in:Combustion science and technology 1998-06, Vol.135 (1-6), p.193-211
Main Authors: Lieuwen, T., Neumeier, Y., Zinn, B. T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents the results of a study of the potential causes of frequently observed combustion instabilities in low NOx gas turbines (LNGT) that burn gaseous fuels in a premixed mode. The study was motivated by indications that such systems are highly sensitive to equivalence ratio perturbations. An unsteady well-stirred reactor model was developed and used to determine the magnitude of the reaction rate and heat release oscillations produced by periodic flow rate, temperature or equivalence ratio perturbations in the combustor's inlet flow at different mean equivalence ratios. This study shows that the magnitudes of the reaction rate and heat release oscillations produced by these perturbations remains practically unchanged, decreases, and significantly (i.e., by a factor of 5-100) increases, respectively, as the equivalence ratio decreases. These results strongly suggest that equivalence ratio perturbations, which are an indication of reactants unmixedness, playa key role in the driving of combustion instabilities in LNGT operating under lean conditions.
ISSN:0010-2202
1563-521X
DOI:10.1080/00102209808924157