Loading…

The Role of Unmixedness and Chemical Kinetics in Driving Combustion Instabilities in Lean Premixed Combustors

This paper presents the results of a study of the potential causes of frequently observed combustion instabilities in low NOx gas turbines (LNGT) that burn gaseous fuels in a premixed mode. The study was motivated by indications that such systems are highly sensitive to equivalence ratio perturbatio...

Full description

Saved in:
Bibliographic Details
Published in:Combustion science and technology 1998-06, Vol.135 (1-6), p.193-211
Main Authors: Lieuwen, T., Neumeier, Y., Zinn, B. T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c404t-1d3667808fbbb89f781b939f1e96d83b804ed48d4508561935963afeee032a0b3
cites cdi_FETCH-LOGICAL-c404t-1d3667808fbbb89f781b939f1e96d83b804ed48d4508561935963afeee032a0b3
container_end_page 211
container_issue 1-6
container_start_page 193
container_title Combustion science and technology
container_volume 135
creator Lieuwen, T.
Neumeier, Y.
Zinn, B. T.
description This paper presents the results of a study of the potential causes of frequently observed combustion instabilities in low NOx gas turbines (LNGT) that burn gaseous fuels in a premixed mode. The study was motivated by indications that such systems are highly sensitive to equivalence ratio perturbations. An unsteady well-stirred reactor model was developed and used to determine the magnitude of the reaction rate and heat release oscillations produced by periodic flow rate, temperature or equivalence ratio perturbations in the combustor's inlet flow at different mean equivalence ratios. This study shows that the magnitudes of the reaction rate and heat release oscillations produced by these perturbations remains practically unchanged, decreases, and significantly (i.e., by a factor of 5-100) increases, respectively, as the equivalence ratio decreases. These results strongly suggest that equivalence ratio perturbations, which are an indication of reactants unmixedness, playa key role in the driving of combustion instabilities in LNGT operating under lean conditions.
doi_str_mv 10.1080/00102209808924157
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_00102209808924157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26816047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-1d3667808fbbb89f781b939f1e96d83b804ed48d4508561935963afeee032a0b3</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKc_wLtciHfVpGnTFLyR-TUcKLKBdyVtT1ykTTTJdPv3dl94MUQIHMJ5npfkReiUkgtKBLkkhJI4JrkgIo8TmmZ7qEdTzqI0pq_7qLfcRx0QH6Ij79-7K2Mx7aF2PAX8YhvAVuGJafUcagPeY2lqPJhCqyvZ4EdtIOjKY23wjdNf2rzhgW3LmQ_aGjw0PshSNzpoWDEjkAY_O1jFbUnr_DE6ULLxcLKZfTS5ux0PHqLR0_1wcD2KqoQkIaI14zzrvqLKshS5ygQtc5YrCjmvBSsFSaBORJ2kRKSc5izNOZMKAAiLJSlZH52vcz-c_ZyBD0WrfQVNIw3YmS9iLignSdaBdA1WznrvQBUfTrfSLQpKimWxxU6xnXO2CZe-K0c5aSrtf0XOCetOH2VrTBtlXSu_rWvqIshFY93W2Qkvwjx05tW_Jvv7fT9grZ00</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26816047</pqid></control><display><type>article</type><title>The Role of Unmixedness and Chemical Kinetics in Driving Combustion Instabilities in Lean Premixed Combustors</title><source>Taylor and Francis Science and Technology Collection</source><creator>Lieuwen, T. ; Neumeier, Y. ; Zinn, B. T.</creator><creatorcontrib>Lieuwen, T. ; Neumeier, Y. ; Zinn, B. T.</creatorcontrib><description>This paper presents the results of a study of the potential causes of frequently observed combustion instabilities in low NOx gas turbines (LNGT) that burn gaseous fuels in a premixed mode. The study was motivated by indications that such systems are highly sensitive to equivalence ratio perturbations. An unsteady well-stirred reactor model was developed and used to determine the magnitude of the reaction rate and heat release oscillations produced by periodic flow rate, temperature or equivalence ratio perturbations in the combustor's inlet flow at different mean equivalence ratios. This study shows that the magnitudes of the reaction rate and heat release oscillations produced by these perturbations remains practically unchanged, decreases, and significantly (i.e., by a factor of 5-100) increases, respectively, as the equivalence ratio decreases. These results strongly suggest that equivalence ratio perturbations, which are an indication of reactants unmixedness, playa key role in the driving of combustion instabilities in LNGT operating under lean conditions.</description><identifier>ISSN: 0010-2202</identifier><identifier>EISSN: 1563-521X</identifier><identifier>DOI: 10.1080/00102209808924157</identifier><identifier>CODEN: CBSTB9</identifier><language>eng</language><publisher>London: Taylor &amp; Francis Group</publisher><subject>Applied sciences ; Combustion instability ; Combustion. Flame ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; premixed combustion ; Theoretical studies ; Theoretical studies. Data and constants. Metering ; well stirred reactor</subject><ispartof>Combustion science and technology, 1998-06, Vol.135 (1-6), p.193-211</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 1998</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-1d3667808fbbb89f781b939f1e96d83b804ed48d4508561935963afeee032a0b3</citedby><cites>FETCH-LOGICAL-c404t-1d3667808fbbb89f781b939f1e96d83b804ed48d4508561935963afeee032a0b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1660360$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lieuwen, T.</creatorcontrib><creatorcontrib>Neumeier, Y.</creatorcontrib><creatorcontrib>Zinn, B. T.</creatorcontrib><title>The Role of Unmixedness and Chemical Kinetics in Driving Combustion Instabilities in Lean Premixed Combustors</title><title>Combustion science and technology</title><description>This paper presents the results of a study of the potential causes of frequently observed combustion instabilities in low NOx gas turbines (LNGT) that burn gaseous fuels in a premixed mode. The study was motivated by indications that such systems are highly sensitive to equivalence ratio perturbations. An unsteady well-stirred reactor model was developed and used to determine the magnitude of the reaction rate and heat release oscillations produced by periodic flow rate, temperature or equivalence ratio perturbations in the combustor's inlet flow at different mean equivalence ratios. This study shows that the magnitudes of the reaction rate and heat release oscillations produced by these perturbations remains practically unchanged, decreases, and significantly (i.e., by a factor of 5-100) increases, respectively, as the equivalence ratio decreases. These results strongly suggest that equivalence ratio perturbations, which are an indication of reactants unmixedness, playa key role in the driving of combustion instabilities in LNGT operating under lean conditions.</description><subject>Applied sciences</subject><subject>Combustion instability</subject><subject>Combustion. Flame</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>premixed combustion</subject><subject>Theoretical studies</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>well stirred reactor</subject><issn>0010-2202</issn><issn>1563-521X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFkF1LwzAUhoMoOKc_wLtciHfVpGnTFLyR-TUcKLKBdyVtT1ykTTTJdPv3dl94MUQIHMJ5npfkReiUkgtKBLkkhJI4JrkgIo8TmmZ7qEdTzqI0pq_7qLfcRx0QH6Ij79-7K2Mx7aF2PAX8YhvAVuGJafUcagPeY2lqPJhCqyvZ4EdtIOjKY23wjdNf2rzhgW3LmQ_aGjw0PshSNzpoWDEjkAY_O1jFbUnr_DE6ULLxcLKZfTS5ux0PHqLR0_1wcD2KqoQkIaI14zzrvqLKshS5ygQtc5YrCjmvBSsFSaBORJ2kRKSc5izNOZMKAAiLJSlZH52vcz-c_ZyBD0WrfQVNIw3YmS9iLignSdaBdA1WznrvQBUfTrfSLQpKimWxxU6xnXO2CZe-K0c5aSrtf0XOCetOH2VrTBtlXSu_rWvqIshFY93W2Qkvwjx05tW_Jvv7fT9grZ00</recordid><startdate>19980601</startdate><enddate>19980601</enddate><creator>Lieuwen, T.</creator><creator>Neumeier, Y.</creator><creator>Zinn, B. T.</creator><general>Taylor &amp; Francis Group</general><general>Taylor &amp; Francis</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19980601</creationdate><title>The Role of Unmixedness and Chemical Kinetics in Driving Combustion Instabilities in Lean Premixed Combustors</title><author>Lieuwen, T. ; Neumeier, Y. ; Zinn, B. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-1d3667808fbbb89f781b939f1e96d83b804ed48d4508561935963afeee032a0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Applied sciences</topic><topic>Combustion instability</topic><topic>Combustion. Flame</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>premixed combustion</topic><topic>Theoretical studies</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>well stirred reactor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lieuwen, T.</creatorcontrib><creatorcontrib>Neumeier, Y.</creatorcontrib><creatorcontrib>Zinn, B. T.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Combustion science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lieuwen, T.</au><au>Neumeier, Y.</au><au>Zinn, B. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Role of Unmixedness and Chemical Kinetics in Driving Combustion Instabilities in Lean Premixed Combustors</atitle><jtitle>Combustion science and technology</jtitle><date>1998-06-01</date><risdate>1998</risdate><volume>135</volume><issue>1-6</issue><spage>193</spage><epage>211</epage><pages>193-211</pages><issn>0010-2202</issn><eissn>1563-521X</eissn><coden>CBSTB9</coden><abstract>This paper presents the results of a study of the potential causes of frequently observed combustion instabilities in low NOx gas turbines (LNGT) that burn gaseous fuels in a premixed mode. The study was motivated by indications that such systems are highly sensitive to equivalence ratio perturbations. An unsteady well-stirred reactor model was developed and used to determine the magnitude of the reaction rate and heat release oscillations produced by periodic flow rate, temperature or equivalence ratio perturbations in the combustor's inlet flow at different mean equivalence ratios. This study shows that the magnitudes of the reaction rate and heat release oscillations produced by these perturbations remains practically unchanged, decreases, and significantly (i.e., by a factor of 5-100) increases, respectively, as the equivalence ratio decreases. These results strongly suggest that equivalence ratio perturbations, which are an indication of reactants unmixedness, playa key role in the driving of combustion instabilities in LNGT operating under lean conditions.</abstract><cop>London</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/00102209808924157</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-2202
ispartof Combustion science and technology, 1998-06, Vol.135 (1-6), p.193-211
issn 0010-2202
1563-521X
language eng
recordid cdi_crossref_primary_10_1080_00102209808924157
source Taylor and Francis Science and Technology Collection
subjects Applied sciences
Combustion instability
Combustion. Flame
Energy
Energy. Thermal use of fuels
Exact sciences and technology
premixed combustion
Theoretical studies
Theoretical studies. Data and constants. Metering
well stirred reactor
title The Role of Unmixedness and Chemical Kinetics in Driving Combustion Instabilities in Lean Premixed Combustors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A58%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Role%20of%20Unmixedness%20and%20Chemical%20Kinetics%20in%20Driving%20Combustion%20Instabilities%20in%20Lean%20Premixed%20Combustors&rft.jtitle=Combustion%20science%20and%20technology&rft.au=Lieuwen,%20T.&rft.date=1998-06-01&rft.volume=135&rft.issue=1-6&rft.spage=193&rft.epage=211&rft.pages=193-211&rft.issn=0010-2202&rft.eissn=1563-521X&rft.coden=CBSTB9&rft_id=info:doi/10.1080/00102209808924157&rft_dat=%3Cproquest_cross%3E26816047%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c404t-1d3667808fbbb89f781b939f1e96d83b804ed48d4508561935963afeee032a0b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=26816047&rft_id=info:pmid/&rfr_iscdi=true