Loading…
Fixed-time stability of ODE and fixed-time stability of neural network
We give the sufficient conditions to fixed-time stability for nonautonomous ODEs for which the right-hand side is only Lebesgue measurable with respect to time t. Using dual tools, we present completely new approach to fixed-time stability by defining new class of functions and consideration of dual...
Saved in:
Published in: | International journal of control 2021-12, Vol.94 (12), p.3332-3338 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c338t-d68d63bf825519ae3ce54ddeab196c81ce76959f8f624b784a360f6c730edd3f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c338t-d68d63bf825519ae3ce54ddeab196c81ce76959f8f624b784a360f6c730edd3f3 |
container_end_page | 3338 |
container_issue | 12 |
container_start_page | 3332 |
container_title | International journal of control |
container_volume | 94 |
creator | Michalak, Anna Nowakowski, Andrzej |
description | We give the sufficient conditions to fixed-time stability for nonautonomous ODEs for which the right-hand side is only Lebesgue measurable with respect to time t. Using dual tools, we present completely new approach to fixed-time stability by defining new class of functions
and consideration of dual Hamilton-Jacobi inequality with the use of Lyapunov function. Duality means that we move all main notions as trajectories, Lyapunov function, Hamiltion-Jacobi inequality to dual space which is determined by us. Then we study stability of the dual trajectories and next we come back to our primal space and infer suitable stability for the original problem. As an application of the main theorems we give numerical examples of fixed-time stable neural network. |
doi_str_mv | 10.1080/00207179.2020.1763469 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_00207179_2020_1763469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2591867790</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-d68d63bf825519ae3ce54ddeab196c81ce76959f8f624b784a360f6c730edd3f3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKs_QRhwPTWZTF47pbYqFLrRdcjkAakzk5qkaP-9M0xd6upcuN85l3sAuEVwgSCH9xBWkCEmFtUwLBCjuKbiDMwQprQkvILnYDYy5QhdgquUdhAiTDiagfXaf1tTZt_ZImXV-NbnYxFcsX1aFao3hftj39tDVO0g-SvEj2tw4VSb7M1J5-B9vXpbvpSb7fPr8nFTaox5Lg3lhuLG8YoQJJTF2pLaGKsaJKjmSFtGBRGOO1rVDeO1whQ6qhmG1hjs8BzcTbn7GD4PNmW5C4fYDydlRQTilDEBB4pMlI4hpWid3EffqXiUCMqxMvlbmRwrk6fKBt_D5PO9C7FTw2etkVkd2xBdVL32SeL_I34ALqdyBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2591867790</pqid></control><display><type>article</type><title>Fixed-time stability of ODE and fixed-time stability of neural network</title><source>Taylor and Francis Science and Technology Collection</source><creator>Michalak, Anna ; Nowakowski, Andrzej</creator><creatorcontrib>Michalak, Anna ; Nowakowski, Andrzej</creatorcontrib><description>We give the sufficient conditions to fixed-time stability for nonautonomous ODEs for which the right-hand side is only Lebesgue measurable with respect to time t. Using dual tools, we present completely new approach to fixed-time stability by defining new class of functions
and consideration of dual Hamilton-Jacobi inequality with the use of Lyapunov function. Duality means that we move all main notions as trajectories, Lyapunov function, Hamiltion-Jacobi inequality to dual space which is determined by us. Then we study stability of the dual trajectories and next we come back to our primal space and infer suitable stability for the original problem. As an application of the main theorems we give numerical examples of fixed-time stable neural network.</description><identifier>ISSN: 0020-7179</identifier><identifier>EISSN: 1366-5820</identifier><identifier>DOI: 10.1080/00207179.2020.1763469</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>dual fixed time stability ; dual Lyapunov stability ; fixed-time stability ; Liapunov functions ; neural network ; Neural networks ; Stability</subject><ispartof>International journal of control, 2021-12, Vol.94 (12), p.3332-3338</ispartof><rights>2020 Informa UK Limited, trading as Taylor & Francis Group 2020</rights><rights>2020 Informa UK Limited, trading as Taylor & Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-d68d63bf825519ae3ce54ddeab196c81ce76959f8f624b784a360f6c730edd3f3</citedby><cites>FETCH-LOGICAL-c338t-d68d63bf825519ae3ce54ddeab196c81ce76959f8f624b784a360f6c730edd3f3</cites><orcidid>0000-0003-1670-9770 ; 0000-0003-3588-2149</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Michalak, Anna</creatorcontrib><creatorcontrib>Nowakowski, Andrzej</creatorcontrib><title>Fixed-time stability of ODE and fixed-time stability of neural network</title><title>International journal of control</title><description>We give the sufficient conditions to fixed-time stability for nonautonomous ODEs for which the right-hand side is only Lebesgue measurable with respect to time t. Using dual tools, we present completely new approach to fixed-time stability by defining new class of functions
and consideration of dual Hamilton-Jacobi inequality with the use of Lyapunov function. Duality means that we move all main notions as trajectories, Lyapunov function, Hamiltion-Jacobi inequality to dual space which is determined by us. Then we study stability of the dual trajectories and next we come back to our primal space and infer suitable stability for the original problem. As an application of the main theorems we give numerical examples of fixed-time stable neural network.</description><subject>dual fixed time stability</subject><subject>dual Lyapunov stability</subject><subject>fixed-time stability</subject><subject>Liapunov functions</subject><subject>neural network</subject><subject>Neural networks</subject><subject>Stability</subject><issn>0020-7179</issn><issn>1366-5820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKs_QRhwPTWZTF47pbYqFLrRdcjkAakzk5qkaP-9M0xd6upcuN85l3sAuEVwgSCH9xBWkCEmFtUwLBCjuKbiDMwQprQkvILnYDYy5QhdgquUdhAiTDiagfXaf1tTZt_ZImXV-NbnYxFcsX1aFao3hftj39tDVO0g-SvEj2tw4VSb7M1J5-B9vXpbvpSb7fPr8nFTaox5Lg3lhuLG8YoQJJTF2pLaGKsaJKjmSFtGBRGOO1rVDeO1whQ6qhmG1hjs8BzcTbn7GD4PNmW5C4fYDydlRQTilDEBB4pMlI4hpWid3EffqXiUCMqxMvlbmRwrk6fKBt_D5PO9C7FTw2etkVkd2xBdVL32SeL_I34ALqdyBg</recordid><startdate>20211202</startdate><enddate>20211202</enddate><creator>Michalak, Anna</creator><creator>Nowakowski, Andrzej</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1670-9770</orcidid><orcidid>https://orcid.org/0000-0003-3588-2149</orcidid></search><sort><creationdate>20211202</creationdate><title>Fixed-time stability of ODE and fixed-time stability of neural network</title><author>Michalak, Anna ; Nowakowski, Andrzej</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-d68d63bf825519ae3ce54ddeab196c81ce76959f8f624b784a360f6c730edd3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>dual fixed time stability</topic><topic>dual Lyapunov stability</topic><topic>fixed-time stability</topic><topic>Liapunov functions</topic><topic>neural network</topic><topic>Neural networks</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Michalak, Anna</creatorcontrib><creatorcontrib>Nowakowski, Andrzej</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Michalak, Anna</au><au>Nowakowski, Andrzej</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fixed-time stability of ODE and fixed-time stability of neural network</atitle><jtitle>International journal of control</jtitle><date>2021-12-02</date><risdate>2021</risdate><volume>94</volume><issue>12</issue><spage>3332</spage><epage>3338</epage><pages>3332-3338</pages><issn>0020-7179</issn><eissn>1366-5820</eissn><abstract>We give the sufficient conditions to fixed-time stability for nonautonomous ODEs for which the right-hand side is only Lebesgue measurable with respect to time t. Using dual tools, we present completely new approach to fixed-time stability by defining new class of functions
and consideration of dual Hamilton-Jacobi inequality with the use of Lyapunov function. Duality means that we move all main notions as trajectories, Lyapunov function, Hamiltion-Jacobi inequality to dual space which is determined by us. Then we study stability of the dual trajectories and next we come back to our primal space and infer suitable stability for the original problem. As an application of the main theorems we give numerical examples of fixed-time stable neural network.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/00207179.2020.1763469</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1670-9770</orcidid><orcidid>https://orcid.org/0000-0003-3588-2149</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7179 |
ispartof | International journal of control, 2021-12, Vol.94 (12), p.3332-3338 |
issn | 0020-7179 1366-5820 |
language | eng |
recordid | cdi_crossref_primary_10_1080_00207179_2020_1763469 |
source | Taylor and Francis Science and Technology Collection |
subjects | dual fixed time stability dual Lyapunov stability fixed-time stability Liapunov functions neural network Neural networks Stability |
title | Fixed-time stability of ODE and fixed-time stability of neural network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T17%3A53%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fixed-time%20stability%20of%20ODE%20and%20fixed-time%20stability%20of%20neural%20network&rft.jtitle=International%20journal%20of%20control&rft.au=Michalak,%20Anna&rft.date=2021-12-02&rft.volume=94&rft.issue=12&rft.spage=3332&rft.epage=3338&rft.pages=3332-3338&rft.issn=0020-7179&rft.eissn=1366-5820&rft_id=info:doi/10.1080/00207179.2020.1763469&rft_dat=%3Cproquest_cross%3E2591867790%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-d68d63bf825519ae3ce54ddeab196c81ce76959f8f624b784a360f6c730edd3f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2591867790&rft_id=info:pmid/&rfr_iscdi=true |