Loading…

Fixed-time stability of ODE and fixed-time stability of neural network

We give the sufficient conditions to fixed-time stability for nonautonomous ODEs for which the right-hand side is only Lebesgue measurable with respect to time t. Using dual tools, we present completely new approach to fixed-time stability by defining new class of functions and consideration of dual...

Full description

Saved in:
Bibliographic Details
Published in:International journal of control 2021-12, Vol.94 (12), p.3332-3338
Main Authors: Michalak, Anna, Nowakowski, Andrzej
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c338t-d68d63bf825519ae3ce54ddeab196c81ce76959f8f624b784a360f6c730edd3f3
cites cdi_FETCH-LOGICAL-c338t-d68d63bf825519ae3ce54ddeab196c81ce76959f8f624b784a360f6c730edd3f3
container_end_page 3338
container_issue 12
container_start_page 3332
container_title International journal of control
container_volume 94
creator Michalak, Anna
Nowakowski, Andrzej
description We give the sufficient conditions to fixed-time stability for nonautonomous ODEs for which the right-hand side is only Lebesgue measurable with respect to time t. Using dual tools, we present completely new approach to fixed-time stability by defining new class of functions and consideration of dual Hamilton-Jacobi inequality with the use of Lyapunov function. Duality means that we move all main notions as trajectories, Lyapunov function, Hamiltion-Jacobi inequality to dual space which is determined by us. Then we study stability of the dual trajectories and next we come back to our primal space and infer suitable stability for the original problem. As an application of the main theorems we give numerical examples of fixed-time stable neural network.
doi_str_mv 10.1080/00207179.2020.1763469
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_00207179_2020_1763469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2591867790</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-d68d63bf825519ae3ce54ddeab196c81ce76959f8f624b784a360f6c730edd3f3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKs_QRhwPTWZTF47pbYqFLrRdcjkAakzk5qkaP-9M0xd6upcuN85l3sAuEVwgSCH9xBWkCEmFtUwLBCjuKbiDMwQprQkvILnYDYy5QhdgquUdhAiTDiagfXaf1tTZt_ZImXV-NbnYxFcsX1aFao3hftj39tDVO0g-SvEj2tw4VSb7M1J5-B9vXpbvpSb7fPr8nFTaox5Lg3lhuLG8YoQJJTF2pLaGKsaJKjmSFtGBRGOO1rVDeO1whQ6qhmG1hjs8BzcTbn7GD4PNmW5C4fYDydlRQTilDEBB4pMlI4hpWid3EffqXiUCMqxMvlbmRwrk6fKBt_D5PO9C7FTw2etkVkd2xBdVL32SeL_I34ALqdyBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2591867790</pqid></control><display><type>article</type><title>Fixed-time stability of ODE and fixed-time stability of neural network</title><source>Taylor and Francis Science and Technology Collection</source><creator>Michalak, Anna ; Nowakowski, Andrzej</creator><creatorcontrib>Michalak, Anna ; Nowakowski, Andrzej</creatorcontrib><description>We give the sufficient conditions to fixed-time stability for nonautonomous ODEs for which the right-hand side is only Lebesgue measurable with respect to time t. Using dual tools, we present completely new approach to fixed-time stability by defining new class of functions and consideration of dual Hamilton-Jacobi inequality with the use of Lyapunov function. Duality means that we move all main notions as trajectories, Lyapunov function, Hamiltion-Jacobi inequality to dual space which is determined by us. Then we study stability of the dual trajectories and next we come back to our primal space and infer suitable stability for the original problem. As an application of the main theorems we give numerical examples of fixed-time stable neural network.</description><identifier>ISSN: 0020-7179</identifier><identifier>EISSN: 1366-5820</identifier><identifier>DOI: 10.1080/00207179.2020.1763469</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>dual fixed time stability ; dual Lyapunov stability ; fixed-time stability ; Liapunov functions ; neural network ; Neural networks ; Stability</subject><ispartof>International journal of control, 2021-12, Vol.94 (12), p.3332-3338</ispartof><rights>2020 Informa UK Limited, trading as Taylor &amp; Francis Group 2020</rights><rights>2020 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-d68d63bf825519ae3ce54ddeab196c81ce76959f8f624b784a360f6c730edd3f3</citedby><cites>FETCH-LOGICAL-c338t-d68d63bf825519ae3ce54ddeab196c81ce76959f8f624b784a360f6c730edd3f3</cites><orcidid>0000-0003-1670-9770 ; 0000-0003-3588-2149</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Michalak, Anna</creatorcontrib><creatorcontrib>Nowakowski, Andrzej</creatorcontrib><title>Fixed-time stability of ODE and fixed-time stability of neural network</title><title>International journal of control</title><description>We give the sufficient conditions to fixed-time stability for nonautonomous ODEs for which the right-hand side is only Lebesgue measurable with respect to time t. Using dual tools, we present completely new approach to fixed-time stability by defining new class of functions and consideration of dual Hamilton-Jacobi inequality with the use of Lyapunov function. Duality means that we move all main notions as trajectories, Lyapunov function, Hamiltion-Jacobi inequality to dual space which is determined by us. Then we study stability of the dual trajectories and next we come back to our primal space and infer suitable stability for the original problem. As an application of the main theorems we give numerical examples of fixed-time stable neural network.</description><subject>dual fixed time stability</subject><subject>dual Lyapunov stability</subject><subject>fixed-time stability</subject><subject>Liapunov functions</subject><subject>neural network</subject><subject>Neural networks</subject><subject>Stability</subject><issn>0020-7179</issn><issn>1366-5820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKs_QRhwPTWZTF47pbYqFLrRdcjkAakzk5qkaP-9M0xd6upcuN85l3sAuEVwgSCH9xBWkCEmFtUwLBCjuKbiDMwQprQkvILnYDYy5QhdgquUdhAiTDiagfXaf1tTZt_ZImXV-NbnYxFcsX1aFao3hftj39tDVO0g-SvEj2tw4VSb7M1J5-B9vXpbvpSb7fPr8nFTaox5Lg3lhuLG8YoQJJTF2pLaGKsaJKjmSFtGBRGOO1rVDeO1whQ6qhmG1hjs8BzcTbn7GD4PNmW5C4fYDydlRQTilDEBB4pMlI4hpWid3EffqXiUCMqxMvlbmRwrk6fKBt_D5PO9C7FTw2etkVkd2xBdVL32SeL_I34ALqdyBg</recordid><startdate>20211202</startdate><enddate>20211202</enddate><creator>Michalak, Anna</creator><creator>Nowakowski, Andrzej</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1670-9770</orcidid><orcidid>https://orcid.org/0000-0003-3588-2149</orcidid></search><sort><creationdate>20211202</creationdate><title>Fixed-time stability of ODE and fixed-time stability of neural network</title><author>Michalak, Anna ; Nowakowski, Andrzej</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-d68d63bf825519ae3ce54ddeab196c81ce76959f8f624b784a360f6c730edd3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>dual fixed time stability</topic><topic>dual Lyapunov stability</topic><topic>fixed-time stability</topic><topic>Liapunov functions</topic><topic>neural network</topic><topic>Neural networks</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Michalak, Anna</creatorcontrib><creatorcontrib>Nowakowski, Andrzej</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Michalak, Anna</au><au>Nowakowski, Andrzej</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fixed-time stability of ODE and fixed-time stability of neural network</atitle><jtitle>International journal of control</jtitle><date>2021-12-02</date><risdate>2021</risdate><volume>94</volume><issue>12</issue><spage>3332</spage><epage>3338</epage><pages>3332-3338</pages><issn>0020-7179</issn><eissn>1366-5820</eissn><abstract>We give the sufficient conditions to fixed-time stability for nonautonomous ODEs for which the right-hand side is only Lebesgue measurable with respect to time t. Using dual tools, we present completely new approach to fixed-time stability by defining new class of functions and consideration of dual Hamilton-Jacobi inequality with the use of Lyapunov function. Duality means that we move all main notions as trajectories, Lyapunov function, Hamiltion-Jacobi inequality to dual space which is determined by us. Then we study stability of the dual trajectories and next we come back to our primal space and infer suitable stability for the original problem. As an application of the main theorems we give numerical examples of fixed-time stable neural network.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/00207179.2020.1763469</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1670-9770</orcidid><orcidid>https://orcid.org/0000-0003-3588-2149</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0020-7179
ispartof International journal of control, 2021-12, Vol.94 (12), p.3332-3338
issn 0020-7179
1366-5820
language eng
recordid cdi_crossref_primary_10_1080_00207179_2020_1763469
source Taylor and Francis Science and Technology Collection
subjects dual fixed time stability
dual Lyapunov stability
fixed-time stability
Liapunov functions
neural network
Neural networks
Stability
title Fixed-time stability of ODE and fixed-time stability of neural network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T17%3A53%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fixed-time%20stability%20of%20ODE%20and%20fixed-time%20stability%20of%20neural%20network&rft.jtitle=International%20journal%20of%20control&rft.au=Michalak,%20Anna&rft.date=2021-12-02&rft.volume=94&rft.issue=12&rft.spage=3332&rft.epage=3338&rft.pages=3332-3338&rft.issn=0020-7179&rft.eissn=1366-5820&rft_id=info:doi/10.1080/00207179.2020.1763469&rft_dat=%3Cproquest_cross%3E2591867790%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-d68d63bf825519ae3ce54ddeab196c81ce76959f8f624b784a360f6c730edd3f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2591867790&rft_id=info:pmid/&rfr_iscdi=true