Loading…

Modelling and analysis of energy footprint of manufacturing systems

Increasing the energy efficiency of manufacturing plants will reduce the production costs and environmental impact. In order to analyse and improve the energy efficiency of manufacturing plants, however, we need models to evaluate the energy footprints of the plants. A key challenge of estimating pl...

Full description

Saved in:
Bibliographic Details
Published in:International journal of production research 2015-12, Vol.53 (23), p.7049-7059
Main Authors: Jeon, Hyun Woo, Taisch, Marco, Prabhu, Vittaldas V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Increasing the energy efficiency of manufacturing plants will reduce the production costs and environmental impact. In order to analyse and improve the energy efficiency of manufacturing plants, however, we need models to evaluate the energy footprints of the plants. A key challenge of estimating plant-level footprints is that systemic methods of connecting information on the product, machine and plant levels are not available. Thus, we propose methods to parameterise product-level elements and to model machine-level factors based on those elements. From the machine-level models, the proposed approach performs simulation experiments and provides the energy footprints in closed-form equations for the plant level. We also suggest that the resulting model can be combined with probabilistic techniques to benchmark the energy efficiency of plants at the industry level. In a case study, we demonstrate how to apply the proposed methods to estimate the energy footprint of a hypothetical plant. The procedures introduced here enable manufacturers to evaluate the energy consumption of their facilities at early stages of manufacturing, and provide tools to assess the energy efficiency of their plant by comparison with peers.
ISSN:0020-7543
1366-588X
DOI:10.1080/00207543.2014.961208