Loading…
Integrated demand forecasting and planning model for repairable spare part: an empirical investigation
Efficient resource management methods are essential for spare parts used in the maintenance and repair of equipment. Forecasting plays a critical role in planning, especially under demand uncertainty. Existing works regarding spare parts with intermittent demand focus on the mere forecasting model w...
Saved in:
Published in: | International journal of production research 2023-10, Vol.61 (20), p.6791-6807 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Efficient resource management methods are essential for spare parts used in the maintenance and repair of equipment. Forecasting plays a critical role in planning, especially under demand uncertainty. Existing works regarding spare parts with intermittent demand focus on the mere forecasting model while integrating the planning and forecasting models are not sufficiently investigated. We examine the interaction between two models to optimise planning and forecasting decisions and prevent sub-optimality. This paper presents two mathematical models, including a planning model that determines stock level, spare part order assignment to suppliers, equipment repair assignment, and the number of intervals over the planning horizon. The second model is the forecasting model by Support Vector Machine (SVM). Considering uncertainty, demand estimation is performed by piecewise linearisation considering the optimal number of intervals in the planning model used in forecasting. An interactive procedure is developed to optimise models. We use an empirical investigation from an oil company providing the spare part supply chain data. The analyses show that demand estimation by piecewise method and integrating the decisions optimises the cost, improves the forecasting accuracy, and planning performance. Moreover, we offer several insights to practitioners that shed light on spare part planning and forecasting decisions. |
---|---|
ISSN: | 0020-7543 1366-588X |
DOI: | 10.1080/00207543.2022.2137596 |