Loading…

Exploring the shortcomings in formal criteria selection for multicriteria decision making based inventory classification models: a systematic review and future directions

Criteria selection significantly impacts the reliability and utility of multicriteria decision making (MCDM) models. While criteria may vary across industries, a formalised criteria selection process is influential in determining MCDM model outcomes. This article analyses and compares the criteria s...

Full description

Saved in:
Bibliographic Details
Published in:International journal of production research 2024-10, Vol.62 (19), p.7279-7299
Main Authors: Theunissen, Frank Michael, Bezuidenhout, Carel Nicolaas, Alam, Shafiq
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c390t-1058dfb14ab675ffdd7f70f471f4c840fccc49d67288bf1ed9d14356b76f1c3
container_end_page 7299
container_issue 19
container_start_page 7279
container_title International journal of production research
container_volume 62
creator Theunissen, Frank Michael
Bezuidenhout, Carel Nicolaas
Alam, Shafiq
description Criteria selection significantly impacts the reliability and utility of multicriteria decision making (MCDM) models. While criteria may vary across industries, a formalised criteria selection process is influential in determining MCDM model outcomes. This article analyses and compares the criteria selection approaches used in 62 articles that apply MCDM-based inventory classification models, contrasting them with methodologies outside the field. Our findings reveal a conspicuous absence of formal criteria selection methods within MCDM-based inventory classification research. The limited application of quantitative and qualitative approaches indicates that this field has not kept pace with methodological advances in criteria selection. To bridge this gap, we advocate for further research aimed at developing a conceptual framework for criteria selection tailored to inventory classification. We also suggest evaluating the impact of formal criteria selection processes on inventory management decisions and exploring the benefits of integrating artificial intelligence into criteria selection for inventory classification studies. Additionally, this article identifies several limitations related to criteria selection for practitioners employing MCDM-based inventory classification models.
doi_str_mv 10.1080/00207543.2024.2320680
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_00207543_2024_2320680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3098046450</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-1058dfb14ab675ffdd7f70f471f4c840fccc49d67288bf1ed9d14356b76f1c3</originalsourceid><addsrcrecordid>eNp9kctu2zAQRYkiAeom_YQCBLqWM5Qoie6qRZAXEKCLdtEdQfFR05VEZ0jF8S_1K0PZSZbhhuDcO2fAuYR8YbBkIOACoIS25tWyhJIvy6qERsAHsmBV0xS1EH9OyGL2FLPpI_kU4wbyqQVfkP9XT9s-oB__0rS2NK4DJh2G_I7Uj9QFHFRPNfpk0SsabW918uGg0GHqk3_TjNU-ztKg_s28TkVrMuTRjingnupexeid1-oAGIKxffxGM3Qfkx1yVVO0j97uqBoNdVOa0FLj8TgxnpNTp_poP7_cZ-TX9dXvy9vi_ufN3eWP-0JXK0gFyx8zrmNcdU1bO2dM61pwvGWOa8HBaa35yjRtKUTnmDUrw3hVN13bOKarM_L1SN1ieJhsTHITJhzzQFnBSgBveA3ZVR9dGkOMaJ3coh8U7iUDOYciX0ORcyjyJZTc9_3Y58fDancBeyOT2ucMHKoxb1BW7yOeAfM-mVk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3098046450</pqid></control><display><type>article</type><title>Exploring the shortcomings in formal criteria selection for multicriteria decision making based inventory classification models: a systematic review and future directions</title><source>EBSCOhost Business Source Ultimate</source><source>Taylor and Francis Science and Technology Collection</source><creator>Theunissen, Frank Michael ; Bezuidenhout, Carel Nicolaas ; Alam, Shafiq</creator><creatorcontrib>Theunissen, Frank Michael ; Bezuidenhout, Carel Nicolaas ; Alam, Shafiq</creatorcontrib><description>Criteria selection significantly impacts the reliability and utility of multicriteria decision making (MCDM) models. While criteria may vary across industries, a formalised criteria selection process is influential in determining MCDM model outcomes. This article analyses and compares the criteria selection approaches used in 62 articles that apply MCDM-based inventory classification models, contrasting them with methodologies outside the field. Our findings reveal a conspicuous absence of formal criteria selection methods within MCDM-based inventory classification research. The limited application of quantitative and qualitative approaches indicates that this field has not kept pace with methodological advances in criteria selection. To bridge this gap, we advocate for further research aimed at developing a conceptual framework for criteria selection tailored to inventory classification. We also suggest evaluating the impact of formal criteria selection processes on inventory management decisions and exploring the benefits of integrating artificial intelligence into criteria selection for inventory classification studies. Additionally, this article identifies several limitations related to criteria selection for practitioners employing MCDM-based inventory classification models.</description><identifier>ISSN: 0020-7543</identifier><identifier>EISSN: 1366-588X</identifier><identifier>DOI: 10.1080/00207543.2024.2320680</identifier><language>eng</language><publisher>London: Taylor &amp; Francis</publisher><subject>Artificial intelligence ; Classification ; Criteria ; criteria selection ; criteria selection process ; inventory classification ; Inventory management ; Multicriteria decision making ; Multiple criteria decision making ; Qualitative analysis</subject><ispartof>International journal of production research, 2024-10, Vol.62 (19), p.7279-7299</ispartof><rights>2024 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. 2024</rights><rights>2024 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c390t-1058dfb14ab675ffdd7f70f471f4c840fccc49d67288bf1ed9d14356b76f1c3</cites><orcidid>0000-0002-9566-8040 ; 0000-0001-6919-2029 ; 0000-0002-3282-5096</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Theunissen, Frank Michael</creatorcontrib><creatorcontrib>Bezuidenhout, Carel Nicolaas</creatorcontrib><creatorcontrib>Alam, Shafiq</creatorcontrib><title>Exploring the shortcomings in formal criteria selection for multicriteria decision making based inventory classification models: a systematic review and future directions</title><title>International journal of production research</title><description>Criteria selection significantly impacts the reliability and utility of multicriteria decision making (MCDM) models. While criteria may vary across industries, a formalised criteria selection process is influential in determining MCDM model outcomes. This article analyses and compares the criteria selection approaches used in 62 articles that apply MCDM-based inventory classification models, contrasting them with methodologies outside the field. Our findings reveal a conspicuous absence of formal criteria selection methods within MCDM-based inventory classification research. The limited application of quantitative and qualitative approaches indicates that this field has not kept pace with methodological advances in criteria selection. To bridge this gap, we advocate for further research aimed at developing a conceptual framework for criteria selection tailored to inventory classification. We also suggest evaluating the impact of formal criteria selection processes on inventory management decisions and exploring the benefits of integrating artificial intelligence into criteria selection for inventory classification studies. Additionally, this article identifies several limitations related to criteria selection for practitioners employing MCDM-based inventory classification models.</description><subject>Artificial intelligence</subject><subject>Classification</subject><subject>Criteria</subject><subject>criteria selection</subject><subject>criteria selection process</subject><subject>inventory classification</subject><subject>Inventory management</subject><subject>Multicriteria decision making</subject><subject>Multiple criteria decision making</subject><subject>Qualitative analysis</subject><issn>0020-7543</issn><issn>1366-588X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><recordid>eNp9kctu2zAQRYkiAeom_YQCBLqWM5Qoie6qRZAXEKCLdtEdQfFR05VEZ0jF8S_1K0PZSZbhhuDcO2fAuYR8YbBkIOACoIS25tWyhJIvy6qERsAHsmBV0xS1EH9OyGL2FLPpI_kU4wbyqQVfkP9XT9s-oB__0rS2NK4DJh2G_I7Uj9QFHFRPNfpk0SsabW918uGg0GHqk3_TjNU-ztKg_s28TkVrMuTRjingnupexeid1-oAGIKxffxGM3Qfkx1yVVO0j97uqBoNdVOa0FLj8TgxnpNTp_poP7_cZ-TX9dXvy9vi_ufN3eWP-0JXK0gFyx8zrmNcdU1bO2dM61pwvGWOa8HBaa35yjRtKUTnmDUrw3hVN13bOKarM_L1SN1ieJhsTHITJhzzQFnBSgBveA3ZVR9dGkOMaJ3coh8U7iUDOYciX0ORcyjyJZTc9_3Y58fDancBeyOT2ucMHKoxb1BW7yOeAfM-mVk</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Theunissen, Frank Michael</creator><creator>Bezuidenhout, Carel Nicolaas</creator><creator>Alam, Shafiq</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis LLC</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9566-8040</orcidid><orcidid>https://orcid.org/0000-0001-6919-2029</orcidid><orcidid>https://orcid.org/0000-0002-3282-5096</orcidid></search><sort><creationdate>20241001</creationdate><title>Exploring the shortcomings in formal criteria selection for multicriteria decision making based inventory classification models: a systematic review and future directions</title><author>Theunissen, Frank Michael ; Bezuidenhout, Carel Nicolaas ; Alam, Shafiq</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-1058dfb14ab675ffdd7f70f471f4c840fccc49d67288bf1ed9d14356b76f1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial intelligence</topic><topic>Classification</topic><topic>Criteria</topic><topic>criteria selection</topic><topic>criteria selection process</topic><topic>inventory classification</topic><topic>Inventory management</topic><topic>Multicriteria decision making</topic><topic>Multiple criteria decision making</topic><topic>Qualitative analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Theunissen, Frank Michael</creatorcontrib><creatorcontrib>Bezuidenhout, Carel Nicolaas</creatorcontrib><creatorcontrib>Alam, Shafiq</creatorcontrib><collection>Taylor &amp; Francis Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of production research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Theunissen, Frank Michael</au><au>Bezuidenhout, Carel Nicolaas</au><au>Alam, Shafiq</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring the shortcomings in formal criteria selection for multicriteria decision making based inventory classification models: a systematic review and future directions</atitle><jtitle>International journal of production research</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>62</volume><issue>19</issue><spage>7279</spage><epage>7299</epage><pages>7279-7299</pages><issn>0020-7543</issn><eissn>1366-588X</eissn><abstract>Criteria selection significantly impacts the reliability and utility of multicriteria decision making (MCDM) models. While criteria may vary across industries, a formalised criteria selection process is influential in determining MCDM model outcomes. This article analyses and compares the criteria selection approaches used in 62 articles that apply MCDM-based inventory classification models, contrasting them with methodologies outside the field. Our findings reveal a conspicuous absence of formal criteria selection methods within MCDM-based inventory classification research. The limited application of quantitative and qualitative approaches indicates that this field has not kept pace with methodological advances in criteria selection. To bridge this gap, we advocate for further research aimed at developing a conceptual framework for criteria selection tailored to inventory classification. We also suggest evaluating the impact of formal criteria selection processes on inventory management decisions and exploring the benefits of integrating artificial intelligence into criteria selection for inventory classification studies. Additionally, this article identifies several limitations related to criteria selection for practitioners employing MCDM-based inventory classification models.</abstract><cop>London</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/00207543.2024.2320680</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-9566-8040</orcidid><orcidid>https://orcid.org/0000-0001-6919-2029</orcidid><orcidid>https://orcid.org/0000-0002-3282-5096</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0020-7543
ispartof International journal of production research, 2024-10, Vol.62 (19), p.7279-7299
issn 0020-7543
1366-588X
language eng
recordid cdi_crossref_primary_10_1080_00207543_2024_2320680
source EBSCOhost Business Source Ultimate; Taylor and Francis Science and Technology Collection
subjects Artificial intelligence
Classification
Criteria
criteria selection
criteria selection process
inventory classification
Inventory management
Multicriteria decision making
Multiple criteria decision making
Qualitative analysis
title Exploring the shortcomings in formal criteria selection for multicriteria decision making based inventory classification models: a systematic review and future directions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A52%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20the%20shortcomings%20in%20formal%20criteria%20selection%20for%20multicriteria%20decision%20making%20based%20inventory%20classification%20models:%20a%20systematic%20review%20and%20future%20directions&rft.jtitle=International%20journal%20of%20production%20research&rft.au=Theunissen,%20Frank%20Michael&rft.date=2024-10-01&rft.volume=62&rft.issue=19&rft.spage=7279&rft.epage=7299&rft.pages=7279-7299&rft.issn=0020-7543&rft.eissn=1366-588X&rft_id=info:doi/10.1080/00207543.2024.2320680&rft_dat=%3Cproquest_cross%3E3098046450%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c390t-1058dfb14ab675ffdd7f70f471f4c840fccc49d67288bf1ed9d14356b76f1c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3098046450&rft_id=info:pmid/&rfr_iscdi=true