Loading…
Exploring the shortcomings in formal criteria selection for multicriteria decision making based inventory classification models: a systematic review and future directions
Criteria selection significantly impacts the reliability and utility of multicriteria decision making (MCDM) models. While criteria may vary across industries, a formalised criteria selection process is influential in determining MCDM model outcomes. This article analyses and compares the criteria s...
Saved in:
Published in: | International journal of production research 2024-10, Vol.62 (19), p.7279-7299 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c390t-1058dfb14ab675ffdd7f70f471f4c840fccc49d67288bf1ed9d14356b76f1c3 |
container_end_page | 7299 |
container_issue | 19 |
container_start_page | 7279 |
container_title | International journal of production research |
container_volume | 62 |
creator | Theunissen, Frank Michael Bezuidenhout, Carel Nicolaas Alam, Shafiq |
description | Criteria selection significantly impacts the reliability and utility of multicriteria decision making (MCDM) models. While criteria may vary across industries, a formalised criteria selection process is influential in determining MCDM model outcomes. This article analyses and compares the criteria selection approaches used in 62 articles that apply MCDM-based inventory classification models, contrasting them with methodologies outside the field. Our findings reveal a conspicuous absence of formal criteria selection methods within MCDM-based inventory classification research. The limited application of quantitative and qualitative approaches indicates that this field has not kept pace with methodological advances in criteria selection. To bridge this gap, we advocate for further research aimed at developing a conceptual framework for criteria selection tailored to inventory classification. We also suggest evaluating the impact of formal criteria selection processes on inventory management decisions and exploring the benefits of integrating artificial intelligence into criteria selection for inventory classification studies. Additionally, this article identifies several limitations related to criteria selection for practitioners employing MCDM-based inventory classification models. |
doi_str_mv | 10.1080/00207543.2024.2320680 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_00207543_2024_2320680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3098046450</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-1058dfb14ab675ffdd7f70f471f4c840fccc49d67288bf1ed9d14356b76f1c3</originalsourceid><addsrcrecordid>eNp9kctu2zAQRYkiAeom_YQCBLqWM5Qoie6qRZAXEKCLdtEdQfFR05VEZ0jF8S_1K0PZSZbhhuDcO2fAuYR8YbBkIOACoIS25tWyhJIvy6qERsAHsmBV0xS1EH9OyGL2FLPpI_kU4wbyqQVfkP9XT9s-oB__0rS2NK4DJh2G_I7Uj9QFHFRPNfpk0SsabW918uGg0GHqk3_TjNU-ztKg_s28TkVrMuTRjingnupexeid1-oAGIKxffxGM3Qfkx1yVVO0j97uqBoNdVOa0FLj8TgxnpNTp_poP7_cZ-TX9dXvy9vi_ufN3eWP-0JXK0gFyx8zrmNcdU1bO2dM61pwvGWOa8HBaa35yjRtKUTnmDUrw3hVN13bOKarM_L1SN1ieJhsTHITJhzzQFnBSgBveA3ZVR9dGkOMaJ3coh8U7iUDOYciX0ORcyjyJZTc9_3Y58fDancBeyOT2ucMHKoxb1BW7yOeAfM-mVk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3098046450</pqid></control><display><type>article</type><title>Exploring the shortcomings in formal criteria selection for multicriteria decision making based inventory classification models: a systematic review and future directions</title><source>EBSCOhost Business Source Ultimate</source><source>Taylor and Francis Science and Technology Collection</source><creator>Theunissen, Frank Michael ; Bezuidenhout, Carel Nicolaas ; Alam, Shafiq</creator><creatorcontrib>Theunissen, Frank Michael ; Bezuidenhout, Carel Nicolaas ; Alam, Shafiq</creatorcontrib><description>Criteria selection significantly impacts the reliability and utility of multicriteria decision making (MCDM) models. While criteria may vary across industries, a formalised criteria selection process is influential in determining MCDM model outcomes. This article analyses and compares the criteria selection approaches used in 62 articles that apply MCDM-based inventory classification models, contrasting them with methodologies outside the field. Our findings reveal a conspicuous absence of formal criteria selection methods within MCDM-based inventory classification research. The limited application of quantitative and qualitative approaches indicates that this field has not kept pace with methodological advances in criteria selection. To bridge this gap, we advocate for further research aimed at developing a conceptual framework for criteria selection tailored to inventory classification. We also suggest evaluating the impact of formal criteria selection processes on inventory management decisions and exploring the benefits of integrating artificial intelligence into criteria selection for inventory classification studies. Additionally, this article identifies several limitations related to criteria selection for practitioners employing MCDM-based inventory classification models.</description><identifier>ISSN: 0020-7543</identifier><identifier>EISSN: 1366-588X</identifier><identifier>DOI: 10.1080/00207543.2024.2320680</identifier><language>eng</language><publisher>London: Taylor & Francis</publisher><subject>Artificial intelligence ; Classification ; Criteria ; criteria selection ; criteria selection process ; inventory classification ; Inventory management ; Multicriteria decision making ; Multiple criteria decision making ; Qualitative analysis</subject><ispartof>International journal of production research, 2024-10, Vol.62 (19), p.7279-7299</ispartof><rights>2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2024</rights><rights>2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c390t-1058dfb14ab675ffdd7f70f471f4c840fccc49d67288bf1ed9d14356b76f1c3</cites><orcidid>0000-0002-9566-8040 ; 0000-0001-6919-2029 ; 0000-0002-3282-5096</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Theunissen, Frank Michael</creatorcontrib><creatorcontrib>Bezuidenhout, Carel Nicolaas</creatorcontrib><creatorcontrib>Alam, Shafiq</creatorcontrib><title>Exploring the shortcomings in formal criteria selection for multicriteria decision making based inventory classification models: a systematic review and future directions</title><title>International journal of production research</title><description>Criteria selection significantly impacts the reliability and utility of multicriteria decision making (MCDM) models. While criteria may vary across industries, a formalised criteria selection process is influential in determining MCDM model outcomes. This article analyses and compares the criteria selection approaches used in 62 articles that apply MCDM-based inventory classification models, contrasting them with methodologies outside the field. Our findings reveal a conspicuous absence of formal criteria selection methods within MCDM-based inventory classification research. The limited application of quantitative and qualitative approaches indicates that this field has not kept pace with methodological advances in criteria selection. To bridge this gap, we advocate for further research aimed at developing a conceptual framework for criteria selection tailored to inventory classification. We also suggest evaluating the impact of formal criteria selection processes on inventory management decisions and exploring the benefits of integrating artificial intelligence into criteria selection for inventory classification studies. Additionally, this article identifies several limitations related to criteria selection for practitioners employing MCDM-based inventory classification models.</description><subject>Artificial intelligence</subject><subject>Classification</subject><subject>Criteria</subject><subject>criteria selection</subject><subject>criteria selection process</subject><subject>inventory classification</subject><subject>Inventory management</subject><subject>Multicriteria decision making</subject><subject>Multiple criteria decision making</subject><subject>Qualitative analysis</subject><issn>0020-7543</issn><issn>1366-588X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><recordid>eNp9kctu2zAQRYkiAeom_YQCBLqWM5Qoie6qRZAXEKCLdtEdQfFR05VEZ0jF8S_1K0PZSZbhhuDcO2fAuYR8YbBkIOACoIS25tWyhJIvy6qERsAHsmBV0xS1EH9OyGL2FLPpI_kU4wbyqQVfkP9XT9s-oB__0rS2NK4DJh2G_I7Uj9QFHFRPNfpk0SsabW918uGg0GHqk3_TjNU-ztKg_s28TkVrMuTRjingnupexeid1-oAGIKxffxGM3Qfkx1yVVO0j97uqBoNdVOa0FLj8TgxnpNTp_poP7_cZ-TX9dXvy9vi_ufN3eWP-0JXK0gFyx8zrmNcdU1bO2dM61pwvGWOa8HBaa35yjRtKUTnmDUrw3hVN13bOKarM_L1SN1ieJhsTHITJhzzQFnBSgBveA3ZVR9dGkOMaJ3coh8U7iUDOYciX0ORcyjyJZTc9_3Y58fDancBeyOT2ucMHKoxb1BW7yOeAfM-mVk</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Theunissen, Frank Michael</creator><creator>Bezuidenhout, Carel Nicolaas</creator><creator>Alam, Shafiq</creator><general>Taylor & Francis</general><general>Taylor & Francis LLC</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9566-8040</orcidid><orcidid>https://orcid.org/0000-0001-6919-2029</orcidid><orcidid>https://orcid.org/0000-0002-3282-5096</orcidid></search><sort><creationdate>20241001</creationdate><title>Exploring the shortcomings in formal criteria selection for multicriteria decision making based inventory classification models: a systematic review and future directions</title><author>Theunissen, Frank Michael ; Bezuidenhout, Carel Nicolaas ; Alam, Shafiq</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-1058dfb14ab675ffdd7f70f471f4c840fccc49d67288bf1ed9d14356b76f1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial intelligence</topic><topic>Classification</topic><topic>Criteria</topic><topic>criteria selection</topic><topic>criteria selection process</topic><topic>inventory classification</topic><topic>Inventory management</topic><topic>Multicriteria decision making</topic><topic>Multiple criteria decision making</topic><topic>Qualitative analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Theunissen, Frank Michael</creatorcontrib><creatorcontrib>Bezuidenhout, Carel Nicolaas</creatorcontrib><creatorcontrib>Alam, Shafiq</creatorcontrib><collection>Taylor & Francis Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of production research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Theunissen, Frank Michael</au><au>Bezuidenhout, Carel Nicolaas</au><au>Alam, Shafiq</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring the shortcomings in formal criteria selection for multicriteria decision making based inventory classification models: a systematic review and future directions</atitle><jtitle>International journal of production research</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>62</volume><issue>19</issue><spage>7279</spage><epage>7299</epage><pages>7279-7299</pages><issn>0020-7543</issn><eissn>1366-588X</eissn><abstract>Criteria selection significantly impacts the reliability and utility of multicriteria decision making (MCDM) models. While criteria may vary across industries, a formalised criteria selection process is influential in determining MCDM model outcomes. This article analyses and compares the criteria selection approaches used in 62 articles that apply MCDM-based inventory classification models, contrasting them with methodologies outside the field. Our findings reveal a conspicuous absence of formal criteria selection methods within MCDM-based inventory classification research. The limited application of quantitative and qualitative approaches indicates that this field has not kept pace with methodological advances in criteria selection. To bridge this gap, we advocate for further research aimed at developing a conceptual framework for criteria selection tailored to inventory classification. We also suggest evaluating the impact of formal criteria selection processes on inventory management decisions and exploring the benefits of integrating artificial intelligence into criteria selection for inventory classification studies. Additionally, this article identifies several limitations related to criteria selection for practitioners employing MCDM-based inventory classification models.</abstract><cop>London</cop><pub>Taylor & Francis</pub><doi>10.1080/00207543.2024.2320680</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-9566-8040</orcidid><orcidid>https://orcid.org/0000-0001-6919-2029</orcidid><orcidid>https://orcid.org/0000-0002-3282-5096</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7543 |
ispartof | International journal of production research, 2024-10, Vol.62 (19), p.7279-7299 |
issn | 0020-7543 1366-588X |
language | eng |
recordid | cdi_crossref_primary_10_1080_00207543_2024_2320680 |
source | EBSCOhost Business Source Ultimate; Taylor and Francis Science and Technology Collection |
subjects | Artificial intelligence Classification Criteria criteria selection criteria selection process inventory classification Inventory management Multicriteria decision making Multiple criteria decision making Qualitative analysis |
title | Exploring the shortcomings in formal criteria selection for multicriteria decision making based inventory classification models: a systematic review and future directions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A52%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20the%20shortcomings%20in%20formal%20criteria%20selection%20for%20multicriteria%20decision%20making%20based%20inventory%20classification%20models:%20a%20systematic%20review%20and%20future%20directions&rft.jtitle=International%20journal%20of%20production%20research&rft.au=Theunissen,%20Frank%20Michael&rft.date=2024-10-01&rft.volume=62&rft.issue=19&rft.spage=7279&rft.epage=7299&rft.pages=7279-7299&rft.issn=0020-7543&rft.eissn=1366-588X&rft_id=info:doi/10.1080/00207543.2024.2320680&rft_dat=%3Cproquest_cross%3E3098046450%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c390t-1058dfb14ab675ffdd7f70f471f4c840fccc49d67288bf1ed9d14356b76f1c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3098046450&rft_id=info:pmid/&rfr_iscdi=true |