Loading…

D-stability problem of discrete singularly perturbed systems

The D-stability problem of discrete time-delay singularly perturbed systems is examined. A two-stage method is first developed to analyse the stability relationship between a discrete time-delay singularly perturbed system and its corresponding slow and fast subsystems. Finally, the upper bound of a...

Full description

Saved in:
Bibliographic Details
Published in:International journal of systems science 2003-02, Vol.34 (3), p.227-236
Main Authors: Hsiao, Feng-Hsiag, Hwang, Jiing-Dong, Pan, Shing-Tai
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c356t-bca7c4edc5eff6b18f1579aef57db7a80b07c2cce3ce68e9488e51c4242c499d3
cites cdi_FETCH-LOGICAL-c356t-bca7c4edc5eff6b18f1579aef57db7a80b07c2cce3ce68e9488e51c4242c499d3
container_end_page 236
container_issue 3
container_start_page 227
container_title International journal of systems science
container_volume 34
creator Hsiao, Feng-Hsiag
Hwang, Jiing-Dong
Pan, Shing-Tai
description The D-stability problem of discrete time-delay singularly perturbed systems is examined. A two-stage method is first developed to analyse the stability relationship between a discrete time-delay singularly perturbed system and its corresponding slow and fast subsystems. Finally, the upper bound of a singular perturbation parameter is derived such that D-stability of the slow and fast subsystems can imply that of the original system, provided that the singular perturbation parameter is within this bound. This fact enables us to investigate the D-stability of the original system by establishing that of its corresponding slow and fast subsystems.
doi_str_mv 10.1080/00207720310000071802
format article
fullrecord <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_00207720310000071802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_00207720310000071802</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-bca7c4edc5eff6b18f1579aef57db7a80b07c2cce3ce68e9488e51c4242c499d3</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-Aw_9A9VJmjSpCCLr-gELXvRcknQikXS7JFm0_94u63HRubyHeZ4ZeAm5pHBFQcE1AAMpGVQUdiOpAnZEZpTXvBQVbY7JbIeUE0NPyVlKnxMlBIMZuX0oU9bGB5_HYhMHE7AvBld0PtmIGYvk1x_boGOY1hjzNhrsijSmjH06JydOh4QXvzkn74_Lt8VzuXp9elncr0pbiTqXxmppOXZWoHO1ocpRIRuNTsjOSK3AgLTMWqws1gobrhQKajnjzPKm6ao54fu7Ng4pRXTtJvpex7Gl0O4aaA81MGk3e82v3RB7_TXE0LVZj2GILuq19emg2ObvPMl3_8rVn-9_AKv-deE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>D-stability problem of discrete singularly perturbed systems</title><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)</source><creator>Hsiao, Feng-Hsiag ; Hwang, Jiing-Dong ; Pan, Shing-Tai</creator><creatorcontrib>Hsiao, Feng-Hsiag ; Hwang, Jiing-Dong ; Pan, Shing-Tai</creatorcontrib><description>The D-stability problem of discrete time-delay singularly perturbed systems is examined. A two-stage method is first developed to analyse the stability relationship between a discrete time-delay singularly perturbed system and its corresponding slow and fast subsystems. Finally, the upper bound of a singular perturbation parameter is derived such that D-stability of the slow and fast subsystems can imply that of the original system, provided that the singular perturbation parameter is within this bound. This fact enables us to investigate the D-stability of the original system by establishing that of its corresponding slow and fast subsystems.</description><identifier>ISSN: 0020-7721</identifier><identifier>EISSN: 1464-5319</identifier><identifier>DOI: 10.1080/00207720310000071802</identifier><language>eng</language><publisher>Taylor &amp; Francis Group</publisher><ispartof>International journal of systems science, 2003-02, Vol.34 (3), p.227-236</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-bca7c4edc5eff6b18f1579aef57db7a80b07c2cce3ce68e9488e51c4242c499d3</citedby><cites>FETCH-LOGICAL-c356t-bca7c4edc5eff6b18f1579aef57db7a80b07c2cce3ce68e9488e51c4242c499d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Hsiao, Feng-Hsiag</creatorcontrib><creatorcontrib>Hwang, Jiing-Dong</creatorcontrib><creatorcontrib>Pan, Shing-Tai</creatorcontrib><title>D-stability problem of discrete singularly perturbed systems</title><title>International journal of systems science</title><description>The D-stability problem of discrete time-delay singularly perturbed systems is examined. A two-stage method is first developed to analyse the stability relationship between a discrete time-delay singularly perturbed system and its corresponding slow and fast subsystems. Finally, the upper bound of a singular perturbation parameter is derived such that D-stability of the slow and fast subsystems can imply that of the original system, provided that the singular perturbation parameter is within this bound. This fact enables us to investigate the D-stability of the original system by establishing that of its corresponding slow and fast subsystems.</description><issn>0020-7721</issn><issn>1464-5319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-Aw_9A9VJmjSpCCLr-gELXvRcknQikXS7JFm0_94u63HRubyHeZ4ZeAm5pHBFQcE1AAMpGVQUdiOpAnZEZpTXvBQVbY7JbIeUE0NPyVlKnxMlBIMZuX0oU9bGB5_HYhMHE7AvBld0PtmIGYvk1x_boGOY1hjzNhrsijSmjH06JydOh4QXvzkn74_Lt8VzuXp9elncr0pbiTqXxmppOXZWoHO1ocpRIRuNTsjOSK3AgLTMWqws1gobrhQKajnjzPKm6ao54fu7Ng4pRXTtJvpex7Gl0O4aaA81MGk3e82v3RB7_TXE0LVZj2GILuq19emg2ObvPMl3_8rVn-9_AKv-deE</recordid><startdate>20030220</startdate><enddate>20030220</enddate><creator>Hsiao, Feng-Hsiag</creator><creator>Hwang, Jiing-Dong</creator><creator>Pan, Shing-Tai</creator><general>Taylor &amp; Francis Group</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20030220</creationdate><title>D-stability problem of discrete singularly perturbed systems</title><author>Hsiao, Feng-Hsiag ; Hwang, Jiing-Dong ; Pan, Shing-Tai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-bca7c4edc5eff6b18f1579aef57db7a80b07c2cce3ce68e9488e51c4242c499d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsiao, Feng-Hsiag</creatorcontrib><creatorcontrib>Hwang, Jiing-Dong</creatorcontrib><creatorcontrib>Pan, Shing-Tai</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of systems science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hsiao, Feng-Hsiag</au><au>Hwang, Jiing-Dong</au><au>Pan, Shing-Tai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>D-stability problem of discrete singularly perturbed systems</atitle><jtitle>International journal of systems science</jtitle><date>2003-02-20</date><risdate>2003</risdate><volume>34</volume><issue>3</issue><spage>227</spage><epage>236</epage><pages>227-236</pages><issn>0020-7721</issn><eissn>1464-5319</eissn><abstract>The D-stability problem of discrete time-delay singularly perturbed systems is examined. A two-stage method is first developed to analyse the stability relationship between a discrete time-delay singularly perturbed system and its corresponding slow and fast subsystems. Finally, the upper bound of a singular perturbation parameter is derived such that D-stability of the slow and fast subsystems can imply that of the original system, provided that the singular perturbation parameter is within this bound. This fact enables us to investigate the D-stability of the original system by establishing that of its corresponding slow and fast subsystems.</abstract><pub>Taylor &amp; Francis Group</pub><doi>10.1080/00207720310000071802</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7721
ispartof International journal of systems science, 2003-02, Vol.34 (3), p.227-236
issn 0020-7721
1464-5319
language eng
recordid cdi_crossref_primary_10_1080_00207720310000071802
source Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)
title D-stability problem of discrete singularly perturbed systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A23%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=D-stability%20problem%20of%20discrete%20singularly%20perturbed%20systems&rft.jtitle=International%20journal%20of%20systems%20science&rft.au=Hsiao,%20Feng-Hsiag&rft.date=2003-02-20&rft.volume=34&rft.issue=3&rft.spage=227&rft.epage=236&rft.pages=227-236&rft.issn=0020-7721&rft.eissn=1464-5319&rft_id=info:doi/10.1080/00207720310000071802&rft_dat=%3Ccrossref_infor%3E10_1080_00207720310000071802%3C/crossref_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c356t-bca7c4edc5eff6b18f1579aef57db7a80b07c2cce3ce68e9488e51c4242c499d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true