Loading…
D-stability problem of discrete singularly perturbed systems
The D-stability problem of discrete time-delay singularly perturbed systems is examined. A two-stage method is first developed to analyse the stability relationship between a discrete time-delay singularly perturbed system and its corresponding slow and fast subsystems. Finally, the upper bound of a...
Saved in:
Published in: | International journal of systems science 2003-02, Vol.34 (3), p.227-236 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c356t-bca7c4edc5eff6b18f1579aef57db7a80b07c2cce3ce68e9488e51c4242c499d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c356t-bca7c4edc5eff6b18f1579aef57db7a80b07c2cce3ce68e9488e51c4242c499d3 |
container_end_page | 236 |
container_issue | 3 |
container_start_page | 227 |
container_title | International journal of systems science |
container_volume | 34 |
creator | Hsiao, Feng-Hsiag Hwang, Jiing-Dong Pan, Shing-Tai |
description | The D-stability problem of discrete time-delay singularly perturbed systems is examined. A two-stage method is first developed to analyse the stability relationship between a discrete time-delay singularly perturbed system and its corresponding slow and fast subsystems. Finally, the upper bound of a singular perturbation parameter is derived such that D-stability of the slow and fast subsystems can imply that of the original system, provided that the singular perturbation parameter is within this bound. This fact enables us to investigate the D-stability of the original system by establishing that of its corresponding slow and fast subsystems. |
doi_str_mv | 10.1080/00207720310000071802 |
format | article |
fullrecord | <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_00207720310000071802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_00207720310000071802</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-bca7c4edc5eff6b18f1579aef57db7a80b07c2cce3ce68e9488e51c4242c499d3</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-Aw_9A9VJmjSpCCLr-gELXvRcknQikXS7JFm0_94u63HRubyHeZ4ZeAm5pHBFQcE1AAMpGVQUdiOpAnZEZpTXvBQVbY7JbIeUE0NPyVlKnxMlBIMZuX0oU9bGB5_HYhMHE7AvBld0PtmIGYvk1x_boGOY1hjzNhrsijSmjH06JydOh4QXvzkn74_Lt8VzuXp9elncr0pbiTqXxmppOXZWoHO1ocpRIRuNTsjOSK3AgLTMWqws1gobrhQKajnjzPKm6ao54fu7Ng4pRXTtJvpex7Gl0O4aaA81MGk3e82v3RB7_TXE0LVZj2GILuq19emg2ObvPMl3_8rVn-9_AKv-deE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>D-stability problem of discrete singularly perturbed systems</title><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)</source><creator>Hsiao, Feng-Hsiag ; Hwang, Jiing-Dong ; Pan, Shing-Tai</creator><creatorcontrib>Hsiao, Feng-Hsiag ; Hwang, Jiing-Dong ; Pan, Shing-Tai</creatorcontrib><description>The D-stability problem of discrete time-delay singularly perturbed systems is examined. A two-stage method is first developed to analyse the stability relationship between a discrete time-delay singularly perturbed system and its corresponding slow and fast subsystems. Finally, the upper bound of a singular perturbation parameter is derived such that D-stability of the slow and fast subsystems can imply that of the original system, provided that the singular perturbation parameter is within this bound. This fact enables us to investigate the D-stability of the original system by establishing that of its corresponding slow and fast subsystems.</description><identifier>ISSN: 0020-7721</identifier><identifier>EISSN: 1464-5319</identifier><identifier>DOI: 10.1080/00207720310000071802</identifier><language>eng</language><publisher>Taylor & Francis Group</publisher><ispartof>International journal of systems science, 2003-02, Vol.34 (3), p.227-236</ispartof><rights>Copyright Taylor & Francis Group, LLC 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-bca7c4edc5eff6b18f1579aef57db7a80b07c2cce3ce68e9488e51c4242c499d3</citedby><cites>FETCH-LOGICAL-c356t-bca7c4edc5eff6b18f1579aef57db7a80b07c2cce3ce68e9488e51c4242c499d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Hsiao, Feng-Hsiag</creatorcontrib><creatorcontrib>Hwang, Jiing-Dong</creatorcontrib><creatorcontrib>Pan, Shing-Tai</creatorcontrib><title>D-stability problem of discrete singularly perturbed systems</title><title>International journal of systems science</title><description>The D-stability problem of discrete time-delay singularly perturbed systems is examined. A two-stage method is first developed to analyse the stability relationship between a discrete time-delay singularly perturbed system and its corresponding slow and fast subsystems. Finally, the upper bound of a singular perturbation parameter is derived such that D-stability of the slow and fast subsystems can imply that of the original system, provided that the singular perturbation parameter is within this bound. This fact enables us to investigate the D-stability of the original system by establishing that of its corresponding slow and fast subsystems.</description><issn>0020-7721</issn><issn>1464-5319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-Aw_9A9VJmjSpCCLr-gELXvRcknQikXS7JFm0_94u63HRubyHeZ4ZeAm5pHBFQcE1AAMpGVQUdiOpAnZEZpTXvBQVbY7JbIeUE0NPyVlKnxMlBIMZuX0oU9bGB5_HYhMHE7AvBld0PtmIGYvk1x_boGOY1hjzNhrsijSmjH06JydOh4QXvzkn74_Lt8VzuXp9elncr0pbiTqXxmppOXZWoHO1ocpRIRuNTsjOSK3AgLTMWqws1gobrhQKajnjzPKm6ao54fu7Ng4pRXTtJvpex7Gl0O4aaA81MGk3e82v3RB7_TXE0LVZj2GILuq19emg2ObvPMl3_8rVn-9_AKv-deE</recordid><startdate>20030220</startdate><enddate>20030220</enddate><creator>Hsiao, Feng-Hsiag</creator><creator>Hwang, Jiing-Dong</creator><creator>Pan, Shing-Tai</creator><general>Taylor & Francis Group</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20030220</creationdate><title>D-stability problem of discrete singularly perturbed systems</title><author>Hsiao, Feng-Hsiag ; Hwang, Jiing-Dong ; Pan, Shing-Tai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-bca7c4edc5eff6b18f1579aef57db7a80b07c2cce3ce68e9488e51c4242c499d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsiao, Feng-Hsiag</creatorcontrib><creatorcontrib>Hwang, Jiing-Dong</creatorcontrib><creatorcontrib>Pan, Shing-Tai</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of systems science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hsiao, Feng-Hsiag</au><au>Hwang, Jiing-Dong</au><au>Pan, Shing-Tai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>D-stability problem of discrete singularly perturbed systems</atitle><jtitle>International journal of systems science</jtitle><date>2003-02-20</date><risdate>2003</risdate><volume>34</volume><issue>3</issue><spage>227</spage><epage>236</epage><pages>227-236</pages><issn>0020-7721</issn><eissn>1464-5319</eissn><abstract>The D-stability problem of discrete time-delay singularly perturbed systems is examined. A two-stage method is first developed to analyse the stability relationship between a discrete time-delay singularly perturbed system and its corresponding slow and fast subsystems. Finally, the upper bound of a singular perturbation parameter is derived such that D-stability of the slow and fast subsystems can imply that of the original system, provided that the singular perturbation parameter is within this bound. This fact enables us to investigate the D-stability of the original system by establishing that of its corresponding slow and fast subsystems.</abstract><pub>Taylor & Francis Group</pub><doi>10.1080/00207720310000071802</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7721 |
ispartof | International journal of systems science, 2003-02, Vol.34 (3), p.227-236 |
issn | 0020-7721 1464-5319 |
language | eng |
recordid | cdi_crossref_primary_10_1080_00207720310000071802 |
source | Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list) |
title | D-stability problem of discrete singularly perturbed systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A23%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=D-stability%20problem%20of%20discrete%20singularly%20perturbed%20systems&rft.jtitle=International%20journal%20of%20systems%20science&rft.au=Hsiao,%20Feng-Hsiag&rft.date=2003-02-20&rft.volume=34&rft.issue=3&rft.spage=227&rft.epage=236&rft.pages=227-236&rft.issn=0020-7721&rft.eissn=1464-5319&rft_id=info:doi/10.1080/00207720310000071802&rft_dat=%3Ccrossref_infor%3E10_1080_00207720310000071802%3C/crossref_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c356t-bca7c4edc5eff6b18f1579aef57db7a80b07c2cce3ce68e9488e51c4242c499d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |