Loading…
Stable control strategy for a second-order nonholonomic planar underactuated mechanical system
This paper presents a stable control strategy for a planar four-link active-passive-active-active (APAA) underactuated mechanical system. The control objective is to move its end-point from any initial position to any target position. First, the controllers are designed to move the first link to the...
Saved in:
Published in: | International journal of systems science 2019-08, Vol.50 (11), p.2126-2141 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c338t-c00e7ea8fb202ca1391c1a3b3e7489a61339aaa85523031c13a602242066248f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c338t-c00e7ea8fb202ca1391c1a3b3e7489a61339aaa85523031c13a602242066248f3 |
container_end_page | 2141 |
container_issue | 11 |
container_start_page | 2126 |
container_title | International journal of systems science |
container_volume | 50 |
creator | Lai, Xuzhi Xiong, Peiyin Wu, Min |
description | This paper presents a stable control strategy for a planar four-link active-passive-active-active (APAA) underactuated mechanical system. The control objective is to move its end-point from any initial position to any target position. First, the controllers are designed to move the first link to the target angle which ensures the target position is within the reachable area of the planar three-link passive-active-active (PAA) system. Meantime, the system is reduced to a planar virtual Pendubot. Then, the periodic controllers are designed based on the nilpotent approximation model to make the first link return to the target angle and all angular velocities converge to zeroes, where the fuzzy modulating is added to adjust the convergence of angular velocities. Thus, the system is reduced to a planar virtual PAA system. Next, the control is divided into two stages, and based on the angle constraint relationships, the target angles of the planar virtual PAA system for the target position are obtained by using the online particle swarm optimisation algorithm. Each stage controllers are designed according to the target angles, so the end-point of the planar APAA system is controlled to the target position. Finally, the validity of the control strategy is demonstrated via simulations. |
doi_str_mv | 10.1080/00207721.2019.1647304 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_00207721_2019_1647304</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2272702330</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-c00e7ea8fb202ca1391c1a3b3e7489a61339aaa85523031c13a602242066248f3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-BCHguuNN0udOGXzBgAt1a7hNU6dDm4xJivTfmzLj1lUW53znho-QawYrBiXcAnAoCs5WHFi1YnlaCEhPyIKleZpkglWnZDF3krl0Ti683wFAlnFYkM-3gHWvqbImONtTHxwG_TXR1jqK1OsYNIl1jXbUWLO1vTV26BTd92jQ0dHEBFUYI9XQQastmk5hHJp80MMlOWux9_rq-C7Jx-PD-_o52bw-vazvN4kSogyJAtCFxrKtOXCFTFRMMRS10EVaVpgzISpELOOfBYiYCcyB85RDnvO0bMWS3Bx2985-j9oHubOjM_Gk5LzgBXARwSXJDi3lrPdOt3LvugHdJBnIWaX8UylnlfKoMnJ3B64zUcuAP9b1jQw49da1Do3qvBT_T_wCBFZ6lA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2272702330</pqid></control><display><type>article</type><title>Stable control strategy for a second-order nonholonomic planar underactuated mechanical system</title><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)</source><creator>Lai, Xuzhi ; Xiong, Peiyin ; Wu, Min</creator><creatorcontrib>Lai, Xuzhi ; Xiong, Peiyin ; Wu, Min</creatorcontrib><description>This paper presents a stable control strategy for a planar four-link active-passive-active-active (APAA) underactuated mechanical system. The control objective is to move its end-point from any initial position to any target position. First, the controllers are designed to move the first link to the target angle which ensures the target position is within the reachable area of the planar three-link passive-active-active (PAA) system. Meantime, the system is reduced to a planar virtual Pendubot. Then, the periodic controllers are designed based on the nilpotent approximation model to make the first link return to the target angle and all angular velocities converge to zeroes, where the fuzzy modulating is added to adjust the convergence of angular velocities. Thus, the system is reduced to a planar virtual PAA system. Next, the control is divided into two stages, and based on the angle constraint relationships, the target angles of the planar virtual PAA system for the target position are obtained by using the online particle swarm optimisation algorithm. Each stage controllers are designed according to the target angles, so the end-point of the planar APAA system is controlled to the target position. Finally, the validity of the control strategy is demonstrated via simulations.</description><identifier>ISSN: 0020-7721</identifier><identifier>EISSN: 1464-5319</identifier><identifier>DOI: 10.1080/00207721.2019.1647304</identifier><language>eng</language><publisher>London: Taylor & Francis</publisher><subject>Algorithms ; Angular velocity ; Computer simulation ; Control systems ; Controllers ; Convergence ; Mechanical systems ; nilpotent approximation ; Particle swarm optimization ; position control ; PSO algorithm ; Strategy ; Underactuated mechanical system</subject><ispartof>International journal of systems science, 2019-08, Vol.50 (11), p.2126-2141</ispartof><rights>2019 Informa UK Limited, trading as Taylor & Francis Group 2019</rights><rights>2019 Informa UK Limited, trading as Taylor & Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-c00e7ea8fb202ca1391c1a3b3e7489a61339aaa85523031c13a602242066248f3</citedby><cites>FETCH-LOGICAL-c338t-c00e7ea8fb202ca1391c1a3b3e7489a61339aaa85523031c13a602242066248f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Lai, Xuzhi</creatorcontrib><creatorcontrib>Xiong, Peiyin</creatorcontrib><creatorcontrib>Wu, Min</creatorcontrib><title>Stable control strategy for a second-order nonholonomic planar underactuated mechanical system</title><title>International journal of systems science</title><description>This paper presents a stable control strategy for a planar four-link active-passive-active-active (APAA) underactuated mechanical system. The control objective is to move its end-point from any initial position to any target position. First, the controllers are designed to move the first link to the target angle which ensures the target position is within the reachable area of the planar three-link passive-active-active (PAA) system. Meantime, the system is reduced to a planar virtual Pendubot. Then, the periodic controllers are designed based on the nilpotent approximation model to make the first link return to the target angle and all angular velocities converge to zeroes, where the fuzzy modulating is added to adjust the convergence of angular velocities. Thus, the system is reduced to a planar virtual PAA system. Next, the control is divided into two stages, and based on the angle constraint relationships, the target angles of the planar virtual PAA system for the target position are obtained by using the online particle swarm optimisation algorithm. Each stage controllers are designed according to the target angles, so the end-point of the planar APAA system is controlled to the target position. Finally, the validity of the control strategy is demonstrated via simulations.</description><subject>Algorithms</subject><subject>Angular velocity</subject><subject>Computer simulation</subject><subject>Control systems</subject><subject>Controllers</subject><subject>Convergence</subject><subject>Mechanical systems</subject><subject>nilpotent approximation</subject><subject>Particle swarm optimization</subject><subject>position control</subject><subject>PSO algorithm</subject><subject>Strategy</subject><subject>Underactuated mechanical system</subject><issn>0020-7721</issn><issn>1464-5319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-BCHguuNN0udOGXzBgAt1a7hNU6dDm4xJivTfmzLj1lUW53znho-QawYrBiXcAnAoCs5WHFi1YnlaCEhPyIKleZpkglWnZDF3krl0Ti683wFAlnFYkM-3gHWvqbImONtTHxwG_TXR1jqK1OsYNIl1jXbUWLO1vTV26BTd92jQ0dHEBFUYI9XQQastmk5hHJp80MMlOWux9_rq-C7Jx-PD-_o52bw-vazvN4kSogyJAtCFxrKtOXCFTFRMMRS10EVaVpgzISpELOOfBYiYCcyB85RDnvO0bMWS3Bx2985-j9oHubOjM_Gk5LzgBXARwSXJDi3lrPdOt3LvugHdJBnIWaX8UylnlfKoMnJ3B64zUcuAP9b1jQw49da1Do3qvBT_T_wCBFZ6lA</recordid><startdate>20190818</startdate><enddate>20190818</enddate><creator>Lai, Xuzhi</creator><creator>Xiong, Peiyin</creator><creator>Wu, Min</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20190818</creationdate><title>Stable control strategy for a second-order nonholonomic planar underactuated mechanical system</title><author>Lai, Xuzhi ; Xiong, Peiyin ; Wu, Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-c00e7ea8fb202ca1391c1a3b3e7489a61339aaa85523031c13a602242066248f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Angular velocity</topic><topic>Computer simulation</topic><topic>Control systems</topic><topic>Controllers</topic><topic>Convergence</topic><topic>Mechanical systems</topic><topic>nilpotent approximation</topic><topic>Particle swarm optimization</topic><topic>position control</topic><topic>PSO algorithm</topic><topic>Strategy</topic><topic>Underactuated mechanical system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lai, Xuzhi</creatorcontrib><creatorcontrib>Xiong, Peiyin</creatorcontrib><creatorcontrib>Wu, Min</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of systems science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lai, Xuzhi</au><au>Xiong, Peiyin</au><au>Wu, Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stable control strategy for a second-order nonholonomic planar underactuated mechanical system</atitle><jtitle>International journal of systems science</jtitle><date>2019-08-18</date><risdate>2019</risdate><volume>50</volume><issue>11</issue><spage>2126</spage><epage>2141</epage><pages>2126-2141</pages><issn>0020-7721</issn><eissn>1464-5319</eissn><abstract>This paper presents a stable control strategy for a planar four-link active-passive-active-active (APAA) underactuated mechanical system. The control objective is to move its end-point from any initial position to any target position. First, the controllers are designed to move the first link to the target angle which ensures the target position is within the reachable area of the planar three-link passive-active-active (PAA) system. Meantime, the system is reduced to a planar virtual Pendubot. Then, the periodic controllers are designed based on the nilpotent approximation model to make the first link return to the target angle and all angular velocities converge to zeroes, where the fuzzy modulating is added to adjust the convergence of angular velocities. Thus, the system is reduced to a planar virtual PAA system. Next, the control is divided into two stages, and based on the angle constraint relationships, the target angles of the planar virtual PAA system for the target position are obtained by using the online particle swarm optimisation algorithm. Each stage controllers are designed according to the target angles, so the end-point of the planar APAA system is controlled to the target position. Finally, the validity of the control strategy is demonstrated via simulations.</abstract><cop>London</cop><pub>Taylor & Francis</pub><doi>10.1080/00207721.2019.1647304</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7721 |
ispartof | International journal of systems science, 2019-08, Vol.50 (11), p.2126-2141 |
issn | 0020-7721 1464-5319 |
language | eng |
recordid | cdi_crossref_primary_10_1080_00207721_2019_1647304 |
source | Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list) |
subjects | Algorithms Angular velocity Computer simulation Control systems Controllers Convergence Mechanical systems nilpotent approximation Particle swarm optimization position control PSO algorithm Strategy Underactuated mechanical system |
title | Stable control strategy for a second-order nonholonomic planar underactuated mechanical system |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A44%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stable%20control%20strategy%20for%20a%20second-order%20nonholonomic%20planar%20underactuated%20mechanical%20system&rft.jtitle=International%20journal%20of%20systems%20science&rft.au=Lai,%20Xuzhi&rft.date=2019-08-18&rft.volume=50&rft.issue=11&rft.spage=2126&rft.epage=2141&rft.pages=2126-2141&rft.issn=0020-7721&rft.eissn=1464-5319&rft_id=info:doi/10.1080/00207721.2019.1647304&rft_dat=%3Cproquest_cross%3E2272702330%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-c00e7ea8fb202ca1391c1a3b3e7489a61339aaa85523031c13a602242066248f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2272702330&rft_id=info:pmid/&rfr_iscdi=true |