Loading…

Stable control strategy for a second-order nonholonomic planar underactuated mechanical system

This paper presents a stable control strategy for a planar four-link active-passive-active-active (APAA) underactuated mechanical system. The control objective is to move its end-point from any initial position to any target position. First, the controllers are designed to move the first link to the...

Full description

Saved in:
Bibliographic Details
Published in:International journal of systems science 2019-08, Vol.50 (11), p.2126-2141
Main Authors: Lai, Xuzhi, Xiong, Peiyin, Wu, Min
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c338t-c00e7ea8fb202ca1391c1a3b3e7489a61339aaa85523031c13a602242066248f3
cites cdi_FETCH-LOGICAL-c338t-c00e7ea8fb202ca1391c1a3b3e7489a61339aaa85523031c13a602242066248f3
container_end_page 2141
container_issue 11
container_start_page 2126
container_title International journal of systems science
container_volume 50
creator Lai, Xuzhi
Xiong, Peiyin
Wu, Min
description This paper presents a stable control strategy for a planar four-link active-passive-active-active (APAA) underactuated mechanical system. The control objective is to move its end-point from any initial position to any target position. First, the controllers are designed to move the first link to the target angle which ensures the target position is within the reachable area of the planar three-link passive-active-active (PAA) system. Meantime, the system is reduced to a planar virtual Pendubot. Then, the periodic controllers are designed based on the nilpotent approximation model to make the first link return to the target angle and all angular velocities converge to zeroes, where the fuzzy modulating is added to adjust the convergence of angular velocities. Thus, the system is reduced to a planar virtual PAA system. Next, the control is divided into two stages, and based on the angle constraint relationships, the target angles of the planar virtual PAA system for the target position are obtained by using the online particle swarm optimisation algorithm. Each stage controllers are designed according to the target angles, so the end-point of the planar APAA system is controlled to the target position. Finally, the validity of the control strategy is demonstrated via simulations.
doi_str_mv 10.1080/00207721.2019.1647304
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_00207721_2019_1647304</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2272702330</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-c00e7ea8fb202ca1391c1a3b3e7489a61339aaa85523031c13a602242066248f3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-BCHguuNN0udOGXzBgAt1a7hNU6dDm4xJivTfmzLj1lUW53znho-QawYrBiXcAnAoCs5WHFi1YnlaCEhPyIKleZpkglWnZDF3krl0Ti683wFAlnFYkM-3gHWvqbImONtTHxwG_TXR1jqK1OsYNIl1jXbUWLO1vTV26BTd92jQ0dHEBFUYI9XQQastmk5hHJp80MMlOWux9_rq-C7Jx-PD-_o52bw-vazvN4kSogyJAtCFxrKtOXCFTFRMMRS10EVaVpgzISpELOOfBYiYCcyB85RDnvO0bMWS3Bx2985-j9oHubOjM_Gk5LzgBXARwSXJDi3lrPdOt3LvugHdJBnIWaX8UylnlfKoMnJ3B64zUcuAP9b1jQw49da1Do3qvBT_T_wCBFZ6lA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2272702330</pqid></control><display><type>article</type><title>Stable control strategy for a second-order nonholonomic planar underactuated mechanical system</title><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)</source><creator>Lai, Xuzhi ; Xiong, Peiyin ; Wu, Min</creator><creatorcontrib>Lai, Xuzhi ; Xiong, Peiyin ; Wu, Min</creatorcontrib><description>This paper presents a stable control strategy for a planar four-link active-passive-active-active (APAA) underactuated mechanical system. The control objective is to move its end-point from any initial position to any target position. First, the controllers are designed to move the first link to the target angle which ensures the target position is within the reachable area of the planar three-link passive-active-active (PAA) system. Meantime, the system is reduced to a planar virtual Pendubot. Then, the periodic controllers are designed based on the nilpotent approximation model to make the first link return to the target angle and all angular velocities converge to zeroes, where the fuzzy modulating is added to adjust the convergence of angular velocities. Thus, the system is reduced to a planar virtual PAA system. Next, the control is divided into two stages, and based on the angle constraint relationships, the target angles of the planar virtual PAA system for the target position are obtained by using the online particle swarm optimisation algorithm. Each stage controllers are designed according to the target angles, so the end-point of the planar APAA system is controlled to the target position. Finally, the validity of the control strategy is demonstrated via simulations.</description><identifier>ISSN: 0020-7721</identifier><identifier>EISSN: 1464-5319</identifier><identifier>DOI: 10.1080/00207721.2019.1647304</identifier><language>eng</language><publisher>London: Taylor &amp; Francis</publisher><subject>Algorithms ; Angular velocity ; Computer simulation ; Control systems ; Controllers ; Convergence ; Mechanical systems ; nilpotent approximation ; Particle swarm optimization ; position control ; PSO algorithm ; Strategy ; Underactuated mechanical system</subject><ispartof>International journal of systems science, 2019-08, Vol.50 (11), p.2126-2141</ispartof><rights>2019 Informa UK Limited, trading as Taylor &amp; Francis Group 2019</rights><rights>2019 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-c00e7ea8fb202ca1391c1a3b3e7489a61339aaa85523031c13a602242066248f3</citedby><cites>FETCH-LOGICAL-c338t-c00e7ea8fb202ca1391c1a3b3e7489a61339aaa85523031c13a602242066248f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Lai, Xuzhi</creatorcontrib><creatorcontrib>Xiong, Peiyin</creatorcontrib><creatorcontrib>Wu, Min</creatorcontrib><title>Stable control strategy for a second-order nonholonomic planar underactuated mechanical system</title><title>International journal of systems science</title><description>This paper presents a stable control strategy for a planar four-link active-passive-active-active (APAA) underactuated mechanical system. The control objective is to move its end-point from any initial position to any target position. First, the controllers are designed to move the first link to the target angle which ensures the target position is within the reachable area of the planar three-link passive-active-active (PAA) system. Meantime, the system is reduced to a planar virtual Pendubot. Then, the periodic controllers are designed based on the nilpotent approximation model to make the first link return to the target angle and all angular velocities converge to zeroes, where the fuzzy modulating is added to adjust the convergence of angular velocities. Thus, the system is reduced to a planar virtual PAA system. Next, the control is divided into two stages, and based on the angle constraint relationships, the target angles of the planar virtual PAA system for the target position are obtained by using the online particle swarm optimisation algorithm. Each stage controllers are designed according to the target angles, so the end-point of the planar APAA system is controlled to the target position. Finally, the validity of the control strategy is demonstrated via simulations.</description><subject>Algorithms</subject><subject>Angular velocity</subject><subject>Computer simulation</subject><subject>Control systems</subject><subject>Controllers</subject><subject>Convergence</subject><subject>Mechanical systems</subject><subject>nilpotent approximation</subject><subject>Particle swarm optimization</subject><subject>position control</subject><subject>PSO algorithm</subject><subject>Strategy</subject><subject>Underactuated mechanical system</subject><issn>0020-7721</issn><issn>1464-5319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-BCHguuNN0udOGXzBgAt1a7hNU6dDm4xJivTfmzLj1lUW53znho-QawYrBiXcAnAoCs5WHFi1YnlaCEhPyIKleZpkglWnZDF3krl0Ti683wFAlnFYkM-3gHWvqbImONtTHxwG_TXR1jqK1OsYNIl1jXbUWLO1vTV26BTd92jQ0dHEBFUYI9XQQastmk5hHJp80MMlOWux9_rq-C7Jx-PD-_o52bw-vazvN4kSogyJAtCFxrKtOXCFTFRMMRS10EVaVpgzISpELOOfBYiYCcyB85RDnvO0bMWS3Bx2985-j9oHubOjM_Gk5LzgBXARwSXJDi3lrPdOt3LvugHdJBnIWaX8UylnlfKoMnJ3B64zUcuAP9b1jQw49da1Do3qvBT_T_wCBFZ6lA</recordid><startdate>20190818</startdate><enddate>20190818</enddate><creator>Lai, Xuzhi</creator><creator>Xiong, Peiyin</creator><creator>Wu, Min</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20190818</creationdate><title>Stable control strategy for a second-order nonholonomic planar underactuated mechanical system</title><author>Lai, Xuzhi ; Xiong, Peiyin ; Wu, Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-c00e7ea8fb202ca1391c1a3b3e7489a61339aaa85523031c13a602242066248f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Angular velocity</topic><topic>Computer simulation</topic><topic>Control systems</topic><topic>Controllers</topic><topic>Convergence</topic><topic>Mechanical systems</topic><topic>nilpotent approximation</topic><topic>Particle swarm optimization</topic><topic>position control</topic><topic>PSO algorithm</topic><topic>Strategy</topic><topic>Underactuated mechanical system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lai, Xuzhi</creatorcontrib><creatorcontrib>Xiong, Peiyin</creatorcontrib><creatorcontrib>Wu, Min</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of systems science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lai, Xuzhi</au><au>Xiong, Peiyin</au><au>Wu, Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stable control strategy for a second-order nonholonomic planar underactuated mechanical system</atitle><jtitle>International journal of systems science</jtitle><date>2019-08-18</date><risdate>2019</risdate><volume>50</volume><issue>11</issue><spage>2126</spage><epage>2141</epage><pages>2126-2141</pages><issn>0020-7721</issn><eissn>1464-5319</eissn><abstract>This paper presents a stable control strategy for a planar four-link active-passive-active-active (APAA) underactuated mechanical system. The control objective is to move its end-point from any initial position to any target position. First, the controllers are designed to move the first link to the target angle which ensures the target position is within the reachable area of the planar three-link passive-active-active (PAA) system. Meantime, the system is reduced to a planar virtual Pendubot. Then, the periodic controllers are designed based on the nilpotent approximation model to make the first link return to the target angle and all angular velocities converge to zeroes, where the fuzzy modulating is added to adjust the convergence of angular velocities. Thus, the system is reduced to a planar virtual PAA system. Next, the control is divided into two stages, and based on the angle constraint relationships, the target angles of the planar virtual PAA system for the target position are obtained by using the online particle swarm optimisation algorithm. Each stage controllers are designed according to the target angles, so the end-point of the planar APAA system is controlled to the target position. Finally, the validity of the control strategy is demonstrated via simulations.</abstract><cop>London</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/00207721.2019.1647304</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7721
ispartof International journal of systems science, 2019-08, Vol.50 (11), p.2126-2141
issn 0020-7721
1464-5319
language eng
recordid cdi_crossref_primary_10_1080_00207721_2019_1647304
source Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)
subjects Algorithms
Angular velocity
Computer simulation
Control systems
Controllers
Convergence
Mechanical systems
nilpotent approximation
Particle swarm optimization
position control
PSO algorithm
Strategy
Underactuated mechanical system
title Stable control strategy for a second-order nonholonomic planar underactuated mechanical system
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A44%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stable%20control%20strategy%20for%20a%20second-order%20nonholonomic%20planar%20underactuated%20mechanical%20system&rft.jtitle=International%20journal%20of%20systems%20science&rft.au=Lai,%20Xuzhi&rft.date=2019-08-18&rft.volume=50&rft.issue=11&rft.spage=2126&rft.epage=2141&rft.pages=2126-2141&rft.issn=0020-7721&rft.eissn=1464-5319&rft_id=info:doi/10.1080/00207721.2019.1647304&rft_dat=%3Cproquest_cross%3E2272702330%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-c00e7ea8fb202ca1391c1a3b3e7489a61339aaa85523031c13a602242066248f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2272702330&rft_id=info:pmid/&rfr_iscdi=true