Loading…

A reliable graphical criterion for TDS stability analysis

The paper considers the stability issue of linear systems with commensurate delays. This issue can be well characterised by the distribution of roots of system's characteristic equation. At first, distribution boundary of the roots (with positive real parts) is explicit given in a practical way...

Full description

Saved in:
Bibliographic Details
Published in:International journal of systems science 2020-01, Vol.51 (2), p.381-388
Main Authors: Cai, Tiao Yang, Jin, Hui Long, Xie, Xiang Peng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c286t-a92414664d9629787ae29c8e181a4dada81f9c14abdf36afe8ed08dfb84e0c0b3
container_end_page 388
container_issue 2
container_start_page 381
container_title International journal of systems science
container_volume 51
creator Cai, Tiao Yang
Jin, Hui Long
Xie, Xiang Peng
description The paper considers the stability issue of linear systems with commensurate delays. This issue can be well characterised by the distribution of roots of system's characteristic equation. At first, distribution boundary of the roots (with positive real parts) is explicit given in a practical way. Subsequently, a reliable graphical stability criterion for calculating the number of unstable roots is deduced, associating with auxiliary polynomial which plays an important role in the analysis of high order and complex systems. Moreover, a procedure for drawing the winding curve of characteristic function in finite path is proposed. At last, typical examples are given to illustrate that the result carried out is reliable and efficient.
doi_str_mv 10.1080/00207721.2020.1716098
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_00207721_2020_1716098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2352368868</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-a92414664d9629787ae29c8e181a4dada81f9c14abdf36afe8ed08dfb84e0c0b3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwCUiWWKeMncSxd1TlKVViQVlbE8cGV25S7FQof0-iwpbVzOLcq5lDyDWDBQMJtwAcqoqzBR-XBauYACVPyIwVosjKnKlTMpuYbILOyUVKWwAoSw4zopY02uCxDpZ-RNx_eoOBmuh7G33XUtdFurl_o6nH2gffDxRbDEPy6ZKcOQzJXv3OOXl_fNisnrP169PLarnODJeiz1DxYjxEFI0SXFWyQsuVkZZJhkWDDUrmlGEF1o3LBTorbQOycbUsLBio8zm5OfbuY_d1sKnX2-4QxyOS5nnJcyGlkCNVHikTu5SidXof_Q7joBnoyZL-s6QnS_rX0pi7O-Z8O766w-8uhkb3OIQuuoit8Unn_1f8AJ67bZU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2352368868</pqid></control><display><type>article</type><title>A reliable graphical criterion for TDS stability analysis</title><source>Taylor and Francis Science and Technology Collection</source><creator>Cai, Tiao Yang ; Jin, Hui Long ; Xie, Xiang Peng</creator><creatorcontrib>Cai, Tiao Yang ; Jin, Hui Long ; Xie, Xiang Peng</creatorcontrib><description>The paper considers the stability issue of linear systems with commensurate delays. This issue can be well characterised by the distribution of roots of system's characteristic equation. At first, distribution boundary of the roots (with positive real parts) is explicit given in a practical way. Subsequently, a reliable graphical stability criterion for calculating the number of unstable roots is deduced, associating with auxiliary polynomial which plays an important role in the analysis of high order and complex systems. Moreover, a procedure for drawing the winding curve of characteristic function in finite path is proposed. At last, typical examples are given to illustrate that the result carried out is reliable and efficient.</description><identifier>ISSN: 0020-7721</identifier><identifier>EISSN: 1464-5319</identifier><identifier>DOI: 10.1080/00207721.2020.1716098</identifier><language>eng</language><publisher>London: Taylor &amp; Francis</publisher><subject>argument principle ; Characteristic functions ; Complex systems ; Eigenvalues ; Eigenvectors ; graphical criterion ; Linear systems ; Polynomials ; Stability analysis ; Stability criteria ; Time delay system</subject><ispartof>International journal of systems science, 2020-01, Vol.51 (2), p.381-388</ispartof><rights>2020 Informa UK Limited, trading as Taylor &amp; Francis Group 2020</rights><rights>2020 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c286t-a92414664d9629787ae29c8e181a4dada81f9c14abdf36afe8ed08dfb84e0c0b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cai, Tiao Yang</creatorcontrib><creatorcontrib>Jin, Hui Long</creatorcontrib><creatorcontrib>Xie, Xiang Peng</creatorcontrib><title>A reliable graphical criterion for TDS stability analysis</title><title>International journal of systems science</title><description>The paper considers the stability issue of linear systems with commensurate delays. This issue can be well characterised by the distribution of roots of system's characteristic equation. At first, distribution boundary of the roots (with positive real parts) is explicit given in a practical way. Subsequently, a reliable graphical stability criterion for calculating the number of unstable roots is deduced, associating with auxiliary polynomial which plays an important role in the analysis of high order and complex systems. Moreover, a procedure for drawing the winding curve of characteristic function in finite path is proposed. At last, typical examples are given to illustrate that the result carried out is reliable and efficient.</description><subject>argument principle</subject><subject>Characteristic functions</subject><subject>Complex systems</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>graphical criterion</subject><subject>Linear systems</subject><subject>Polynomials</subject><subject>Stability analysis</subject><subject>Stability criteria</subject><subject>Time delay system</subject><issn>0020-7721</issn><issn>1464-5319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwCUiWWKeMncSxd1TlKVViQVlbE8cGV25S7FQof0-iwpbVzOLcq5lDyDWDBQMJtwAcqoqzBR-XBauYACVPyIwVosjKnKlTMpuYbILOyUVKWwAoSw4zopY02uCxDpZ-RNx_eoOBmuh7G33XUtdFurl_o6nH2gffDxRbDEPy6ZKcOQzJXv3OOXl_fNisnrP169PLarnODJeiz1DxYjxEFI0SXFWyQsuVkZZJhkWDDUrmlGEF1o3LBTorbQOycbUsLBio8zm5OfbuY_d1sKnX2-4QxyOS5nnJcyGlkCNVHikTu5SidXof_Q7joBnoyZL-s6QnS_rX0pi7O-Z8O766w-8uhkb3OIQuuoit8Unn_1f8AJ67bZU</recordid><startdate>20200125</startdate><enddate>20200125</enddate><creator>Cai, Tiao Yang</creator><creator>Jin, Hui Long</creator><creator>Xie, Xiang Peng</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20200125</creationdate><title>A reliable graphical criterion for TDS stability analysis</title><author>Cai, Tiao Yang ; Jin, Hui Long ; Xie, Xiang Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-a92414664d9629787ae29c8e181a4dada81f9c14abdf36afe8ed08dfb84e0c0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>argument principle</topic><topic>Characteristic functions</topic><topic>Complex systems</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>graphical criterion</topic><topic>Linear systems</topic><topic>Polynomials</topic><topic>Stability analysis</topic><topic>Stability criteria</topic><topic>Time delay system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Tiao Yang</creatorcontrib><creatorcontrib>Jin, Hui Long</creatorcontrib><creatorcontrib>Xie, Xiang Peng</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of systems science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Tiao Yang</au><au>Jin, Hui Long</au><au>Xie, Xiang Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A reliable graphical criterion for TDS stability analysis</atitle><jtitle>International journal of systems science</jtitle><date>2020-01-25</date><risdate>2020</risdate><volume>51</volume><issue>2</issue><spage>381</spage><epage>388</epage><pages>381-388</pages><issn>0020-7721</issn><eissn>1464-5319</eissn><abstract>The paper considers the stability issue of linear systems with commensurate delays. This issue can be well characterised by the distribution of roots of system's characteristic equation. At first, distribution boundary of the roots (with positive real parts) is explicit given in a practical way. Subsequently, a reliable graphical stability criterion for calculating the number of unstable roots is deduced, associating with auxiliary polynomial which plays an important role in the analysis of high order and complex systems. Moreover, a procedure for drawing the winding curve of characteristic function in finite path is proposed. At last, typical examples are given to illustrate that the result carried out is reliable and efficient.</abstract><cop>London</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/00207721.2020.1716098</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7721
ispartof International journal of systems science, 2020-01, Vol.51 (2), p.381-388
issn 0020-7721
1464-5319
language eng
recordid cdi_crossref_primary_10_1080_00207721_2020_1716098
source Taylor and Francis Science and Technology Collection
subjects argument principle
Characteristic functions
Complex systems
Eigenvalues
Eigenvectors
graphical criterion
Linear systems
Polynomials
Stability analysis
Stability criteria
Time delay system
title A reliable graphical criterion for TDS stability analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A00%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20reliable%20graphical%20criterion%20for%20TDS%20stability%20analysis&rft.jtitle=International%20journal%20of%20systems%20science&rft.au=Cai,%20Tiao%20Yang&rft.date=2020-01-25&rft.volume=51&rft.issue=2&rft.spage=381&rft.epage=388&rft.pages=381-388&rft.issn=0020-7721&rft.eissn=1464-5319&rft_id=info:doi/10.1080/00207721.2020.1716098&rft_dat=%3Cproquest_cross%3E2352368868%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c286t-a92414664d9629787ae29c8e181a4dada81f9c14abdf36afe8ed08dfb84e0c0b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2352368868&rft_id=info:pmid/&rfr_iscdi=true