Loading…
A reliable graphical criterion for TDS stability analysis
The paper considers the stability issue of linear systems with commensurate delays. This issue can be well characterised by the distribution of roots of system's characteristic equation. At first, distribution boundary of the roots (with positive real parts) is explicit given in a practical way...
Saved in:
Published in: | International journal of systems science 2020-01, Vol.51 (2), p.381-388 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c286t-a92414664d9629787ae29c8e181a4dada81f9c14abdf36afe8ed08dfb84e0c0b3 |
container_end_page | 388 |
container_issue | 2 |
container_start_page | 381 |
container_title | International journal of systems science |
container_volume | 51 |
creator | Cai, Tiao Yang Jin, Hui Long Xie, Xiang Peng |
description | The paper considers the stability issue of linear systems with commensurate delays. This issue can be well characterised by the distribution of roots of system's characteristic equation. At first, distribution boundary of the roots (with positive real parts) is explicit given in a practical way. Subsequently, a reliable graphical stability criterion for calculating the number of unstable roots is deduced, associating with auxiliary polynomial which plays an important role in the analysis of high order and complex systems. Moreover, a procedure for drawing the winding curve of characteristic function in finite path is proposed. At last, typical examples are given to illustrate that the result carried out is reliable and efficient. |
doi_str_mv | 10.1080/00207721.2020.1716098 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_00207721_2020_1716098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2352368868</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-a92414664d9629787ae29c8e181a4dada81f9c14abdf36afe8ed08dfb84e0c0b3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwCUiWWKeMncSxd1TlKVViQVlbE8cGV25S7FQof0-iwpbVzOLcq5lDyDWDBQMJtwAcqoqzBR-XBauYACVPyIwVosjKnKlTMpuYbILOyUVKWwAoSw4zopY02uCxDpZ-RNx_eoOBmuh7G33XUtdFurl_o6nH2gffDxRbDEPy6ZKcOQzJXv3OOXl_fNisnrP169PLarnODJeiz1DxYjxEFI0SXFWyQsuVkZZJhkWDDUrmlGEF1o3LBTorbQOycbUsLBio8zm5OfbuY_d1sKnX2-4QxyOS5nnJcyGlkCNVHikTu5SidXof_Q7joBnoyZL-s6QnS_rX0pi7O-Z8O766w-8uhkb3OIQuuoit8Unn_1f8AJ67bZU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2352368868</pqid></control><display><type>article</type><title>A reliable graphical criterion for TDS stability analysis</title><source>Taylor and Francis Science and Technology Collection</source><creator>Cai, Tiao Yang ; Jin, Hui Long ; Xie, Xiang Peng</creator><creatorcontrib>Cai, Tiao Yang ; Jin, Hui Long ; Xie, Xiang Peng</creatorcontrib><description>The paper considers the stability issue of linear systems with commensurate delays. This issue can be well characterised by the distribution of roots of system's characteristic equation. At first, distribution boundary of the roots (with positive real parts) is explicit given in a practical way. Subsequently, a reliable graphical stability criterion for calculating the number of unstable roots is deduced, associating with auxiliary polynomial which plays an important role in the analysis of high order and complex systems. Moreover, a procedure for drawing the winding curve of characteristic function in finite path is proposed. At last, typical examples are given to illustrate that the result carried out is reliable and efficient.</description><identifier>ISSN: 0020-7721</identifier><identifier>EISSN: 1464-5319</identifier><identifier>DOI: 10.1080/00207721.2020.1716098</identifier><language>eng</language><publisher>London: Taylor & Francis</publisher><subject>argument principle ; Characteristic functions ; Complex systems ; Eigenvalues ; Eigenvectors ; graphical criterion ; Linear systems ; Polynomials ; Stability analysis ; Stability criteria ; Time delay system</subject><ispartof>International journal of systems science, 2020-01, Vol.51 (2), p.381-388</ispartof><rights>2020 Informa UK Limited, trading as Taylor & Francis Group 2020</rights><rights>2020 Informa UK Limited, trading as Taylor & Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c286t-a92414664d9629787ae29c8e181a4dada81f9c14abdf36afe8ed08dfb84e0c0b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cai, Tiao Yang</creatorcontrib><creatorcontrib>Jin, Hui Long</creatorcontrib><creatorcontrib>Xie, Xiang Peng</creatorcontrib><title>A reliable graphical criterion for TDS stability analysis</title><title>International journal of systems science</title><description>The paper considers the stability issue of linear systems with commensurate delays. This issue can be well characterised by the distribution of roots of system's characteristic equation. At first, distribution boundary of the roots (with positive real parts) is explicit given in a practical way. Subsequently, a reliable graphical stability criterion for calculating the number of unstable roots is deduced, associating with auxiliary polynomial which plays an important role in the analysis of high order and complex systems. Moreover, a procedure for drawing the winding curve of characteristic function in finite path is proposed. At last, typical examples are given to illustrate that the result carried out is reliable and efficient.</description><subject>argument principle</subject><subject>Characteristic functions</subject><subject>Complex systems</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>graphical criterion</subject><subject>Linear systems</subject><subject>Polynomials</subject><subject>Stability analysis</subject><subject>Stability criteria</subject><subject>Time delay system</subject><issn>0020-7721</issn><issn>1464-5319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwCUiWWKeMncSxd1TlKVViQVlbE8cGV25S7FQof0-iwpbVzOLcq5lDyDWDBQMJtwAcqoqzBR-XBauYACVPyIwVosjKnKlTMpuYbILOyUVKWwAoSw4zopY02uCxDpZ-RNx_eoOBmuh7G33XUtdFurl_o6nH2gffDxRbDEPy6ZKcOQzJXv3OOXl_fNisnrP169PLarnODJeiz1DxYjxEFI0SXFWyQsuVkZZJhkWDDUrmlGEF1o3LBTorbQOycbUsLBio8zm5OfbuY_d1sKnX2-4QxyOS5nnJcyGlkCNVHikTu5SidXof_Q7joBnoyZL-s6QnS_rX0pi7O-Z8O766w-8uhkb3OIQuuoit8Unn_1f8AJ67bZU</recordid><startdate>20200125</startdate><enddate>20200125</enddate><creator>Cai, Tiao Yang</creator><creator>Jin, Hui Long</creator><creator>Xie, Xiang Peng</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20200125</creationdate><title>A reliable graphical criterion for TDS stability analysis</title><author>Cai, Tiao Yang ; Jin, Hui Long ; Xie, Xiang Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-a92414664d9629787ae29c8e181a4dada81f9c14abdf36afe8ed08dfb84e0c0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>argument principle</topic><topic>Characteristic functions</topic><topic>Complex systems</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>graphical criterion</topic><topic>Linear systems</topic><topic>Polynomials</topic><topic>Stability analysis</topic><topic>Stability criteria</topic><topic>Time delay system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Tiao Yang</creatorcontrib><creatorcontrib>Jin, Hui Long</creatorcontrib><creatorcontrib>Xie, Xiang Peng</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of systems science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Tiao Yang</au><au>Jin, Hui Long</au><au>Xie, Xiang Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A reliable graphical criterion for TDS stability analysis</atitle><jtitle>International journal of systems science</jtitle><date>2020-01-25</date><risdate>2020</risdate><volume>51</volume><issue>2</issue><spage>381</spage><epage>388</epage><pages>381-388</pages><issn>0020-7721</issn><eissn>1464-5319</eissn><abstract>The paper considers the stability issue of linear systems with commensurate delays. This issue can be well characterised by the distribution of roots of system's characteristic equation. At first, distribution boundary of the roots (with positive real parts) is explicit given in a practical way. Subsequently, a reliable graphical stability criterion for calculating the number of unstable roots is deduced, associating with auxiliary polynomial which plays an important role in the analysis of high order and complex systems. Moreover, a procedure for drawing the winding curve of characteristic function in finite path is proposed. At last, typical examples are given to illustrate that the result carried out is reliable and efficient.</abstract><cop>London</cop><pub>Taylor & Francis</pub><doi>10.1080/00207721.2020.1716098</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7721 |
ispartof | International journal of systems science, 2020-01, Vol.51 (2), p.381-388 |
issn | 0020-7721 1464-5319 |
language | eng |
recordid | cdi_crossref_primary_10_1080_00207721_2020_1716098 |
source | Taylor and Francis Science and Technology Collection |
subjects | argument principle Characteristic functions Complex systems Eigenvalues Eigenvectors graphical criterion Linear systems Polynomials Stability analysis Stability criteria Time delay system |
title | A reliable graphical criterion for TDS stability analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A00%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20reliable%20graphical%20criterion%20for%20TDS%20stability%20analysis&rft.jtitle=International%20journal%20of%20systems%20science&rft.au=Cai,%20Tiao%20Yang&rft.date=2020-01-25&rft.volume=51&rft.issue=2&rft.spage=381&rft.epage=388&rft.pages=381-388&rft.issn=0020-7721&rft.eissn=1464-5319&rft_id=info:doi/10.1080/00207721.2020.1716098&rft_dat=%3Cproquest_cross%3E2352368868%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c286t-a92414664d9629787ae29c8e181a4dada81f9c14abdf36afe8ed08dfb84e0c0b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2352368868&rft_id=info:pmid/&rfr_iscdi=true |